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The basic AR(1) model

• Series of (psychological) measurements y1, . . . , yT.
• Simplest form of the model:

yt = µ+ ϕyt−1 + εt, (t = 2, . . . , T)

• Assume (for now) stationarity (|ϕ| < 1) and εi ∼ N(0, σ2)

• Here, µ and ϕ are fixed: they can’t change.
• But people do change.
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Two types of change in AR(1) models

1. Sudden change

2. Smooth change
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Goal of this talk

Thus, the dynamics in an AR(1) model can change

• Suddenly – at known moment(s)
• Suddenly – at unknown moment(s)
• Smoothly – (all the time)

(Many) models for one of these cases already exist.

My goal of the day: to introduce a model that combines all three cases.

5



Models for sudden change

Many different models exist, e.g.

• Markov switching (regime change) models (next slide)
• Models from in Statistical Quality Control (e.g. the CUSUM procedure; Page,
1954)

• Models from Deep Learning (e.g. Krylov subspace models; Ide & Tsuda, 2007)
• Models from Machine Learning (e.g. relative density-ratio method; Sugiyama,
Suzuki, & Kanamori, 2012)

• . . . . . . . . . (really, a lot of alternatives)
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Regime Switching Models

• Use dummy-variable

Di,t =
{
0 in regime A at time t < i
1 in regime B at time t ≥ i

for some i.

• Then apply model {
yt = µD0,t + ϕD0,tyt−1 + εt Regime A
yt = µD1,t + ϕD1,tyt−1 + εt Regime B

(cf. Hamilton, 1989)
• Straightforward if i known. Apply HMM to find i when unknown.
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Model for smooth change

For this, we use the Time-Varying Autoregressive Model (TV-AR) by Bringmann et
al. (Psychological Methods, 2017).

yt = µt + ϕtyt−1 + εt

• µt and ϕt not fixed, yet are only allowed to vary smoothly:
µt ≈ µt+1 and ϕt ≈ ϕt+1

• This is achieved by using Generalized Additive Models (Hastie & Tibshirani,
1990).

8



Model for smooth change

For this, we use the Time-Varying Autoregressive Model (TV-AR) by Bringmann et
al. (Psychological Methods, 2017).

yt = µt + ϕtyt−1 + εt

• µt and ϕt not fixed, yet are only allowed to vary smoothly:
µt ≈ µt+1 and ϕt ≈ ϕt+1

• This is achieved by using Generalized Additive Models (Hastie & Tibshirani,
1990).

8



Model for smooth change

For this, we use the Time-Varying Autoregressive Model (TV-AR) by Bringmann et
al. (Psychological Methods, 2017).

yt = µt + ϕtyt−1 + εt

• µt and ϕt not fixed, yet are only allowed to vary smoothly:
µt ≈ µt+1 and ϕt ≈ ϕt+1

• This is achieved by using Generalized Additive Models (Hastie & Tibshirani,
1990).

8



TV-AR model for smooth change

works great doesn’t work
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Our model – confirmatory analyses

Basic idea of our TV-AR-RS model:

Combine TV-AR’s smooth parameters with Hamilton’s RS idea:

yt = (µt + µDi,t) + (ϕt + ϕDi,t)× yt−1 + εt

(with Di,t a 0/1-variable)

mcgv-package provides curves for µt and ϕt including CI, and point estimates for
µD, ϕD including SE, and model fit statistics. All you need.
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TV-AR-RS model – confirmatory analyses – example

Simulated data TV-AR model
TV-AR model: AIC = 173.42

Correct TV-AR-RS model: AIC = 64.63, µ̂1 = 1.88 (sd=.13)
Incorrect TV-AR-RS model: AIC = 175.27, µ̂1 = .04 (sd=.13)
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TV-AR-RS model – confirmatory analyses – example

Simulated data TV-AR-RS with correct jump
TV-AR model: AIC = 173.42

Correct TV-AR-RS model: AIC = 64.63, µ̂1 = 1.88 (sd=.13)

Incorrect TV-AR-RS model: AIC = 175.27, µ̂1 = .04 (sd=.13)
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TV-AR-RS model – exploratory analyses

Sketch of the algorithm:

1. Compute AIC(0) for model yt = µt + ϕt × yt−1 + εt

2. ∀ j ∈ {2, . . . , T− 1} compute AIC(1)j for yt = µt + µDj,t + (ϕt + ϕDj,t)× yt−1 + εt

3. Select i = argminj AIC
(1)
j

4. IF AIC(1)i < AIC(0) − 10 THEN select point i as new change point ELSE stop

5. Re-run steps 2 – 4 to find subsequent change points.

(If desired, replace AIC by BIC or any other fit measure.)
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Simulation: design

Multiple conditions:

A B C D E

F G H I J

Furthermore:

• Small or large regime switches
• Length of time series: T = 30, 60, 100, 200, 400, 600, 1000

Fully crossed design, 100(0) replications per cell.
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Simulation: performance measures

I. How much better (or worse) is the model with correct change point, compared
to model without change point?

AIC(1)j − AIC(0)

II. Is the change point placed at the right location?

Median|i− j|
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Simulation: example

T = 200, change in µ: 2sd, change in ϕ: 0.7. R = 100 replications.

AIC gain at J = 100: m = 18.89, s = 7.26.
12% of cases: jump at T = 100, 61%: jump at 99 or 101.
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Simulation results

Mean AIC gain when the changes at the change point are small.

Cond. n = 30 60 100 200 400 600 1000
A 1 2 2 2 2 2 2
B 1 2 2 2 2 2 2
C 1 1 1 1 2 2 2
D 1 -1 -2 -5 -10 -14 -23
E -0 -0 -2 -5 -11 -16 -22
F -0 -1 -3 -5 -10 -15 -23
G -1 -1 -3 -7 -12 -14 -20
H -0 -1 -2 -3 -6 -10 -14
I 1 2 1 1 -1 -2 -4

J(L) 0 -1 -2 -4 -7 -9 -16
J(R) -1 -1 -1 -2 -5 -9 -13 16



Simulation results

Mean AIC gain when the changes at the change point are large.

Cond. n = 30 60 100 200 400 600 1000
A 0 1 1 1 2 2 2
B 1 2 2 2 2 2 2
C 0 1 1 2 2 2 2
D -1 -5 -10 -21 -33 -45 -66
E -1 -4 -9 -19 -34 -44 -66
F -0 -5 -11 -21 -32 -42 -62
G -10 -21 -27 -40 -57 -67 -85
H -1 -3 -5 -11 -16 -22 -29
I 1 -2 -6 -16 -25 -34 -55

J(L) -1 -3 -6 -11 -23 -32 -51
J(R) -17 -25 -4 -12 -13 -57 -41 17



Simulation results

Median absolute ‘miss’ (|i− j|) when the changes at the change point are small.

Cond. n = 30 60 100 200 400 600 1000
D 5 10.5 22.5 2.5 2 2 1
E 7 11 18 7 2 2 1.5
F 6 9 8 4 2 2 1
G 5 10.5 6.5 1.5 1.5 2 2
H 5.5 9 20 22.5 4 2 3
I 7 14.5 26 49.5 106.5 67 69.5
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Simulation results

Median absolute ‘miss’ (|i− j|) when the changes at the change point are large.

Cond. n = 30 60 100 200 400 600 1000
D 6 5 1 1 1 1 1
E 5 7.5 2 1 1 1 1
F 8.5 4 1 1 1 1 1
G 2 1 1 1 1 1 1
H 6 9.5 13 1 1 1 1
I 7 10.5 2.5 1 1 1 1
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Example: n = 1 sleep quality data

At day 148 significant jump:
AIC-gain 10.67 points. Change in µ (p = .038) and change in ϕ (p = .026).
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Conclusions

• Our VAR model can deal with smooth and sudden change in dynamics.
• Changes in ϕ harder to detect than those in µ.
• Can be used for both confirmatory and exploratory purposes.
• Model works, but only for sufficiently large data sets:

• Large ‘jump’: at least T > 60
• Small ‘jump’: at least T > 200

Key references:

• Albers & Bringmann (2018). Changing Individuals. In preparation.
• Bringmann, Hamaker, Vigo, Aubert, Borsboom, Tuerlinckx (2017), Changing Dynamics.
Psychological Methods

• Hamilton (1989). A new approach to the economic analysis of nonstationary time series and
the business cycle, Econometrica

• Kossakowski, Groot, Haslbeck, Borsboom, Wichers (2017). Journal of Open Psychology Data 21


