

Changing Individuals

Modelling smooth and sudden changes in temporal dynamics

Casper Albers & Laura Bringmann

www.casperalbers.nl

@caal

The basic AR(1) model

- Series of (psychological) measurements y_1, \ldots, y_T .
- Simplest form of the model:

$$y_t = \mu + \phi y_{t-1} + \varepsilon_t, \quad (t = 2, ..., T)$$

· Assume (for now) stationarity ($|\phi| < 1$) and $\varepsilon_i \sim N(0, \sigma^2)$

The basic AR(1) model

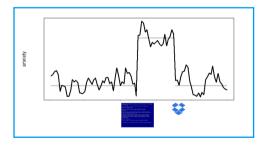
- Series of (psychological) measurements y_1, \ldots, y_T .
- Simplest form of the model:

$$y_t = \mu + \phi y_{t-1} + \varepsilon_t, \quad (t = 2, ..., T)$$

- Assume (for now) stationarity ($|\phi| < 1$) and $\varepsilon_i \sim N(0, \sigma^2)$
- Here, μ and ϕ are fixed: they can't change.
- But people do change.

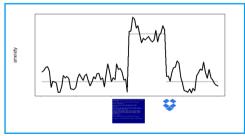
Two types of change in AR(1) models

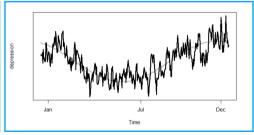
1. Sudden change



Two types of change in AR(1) models

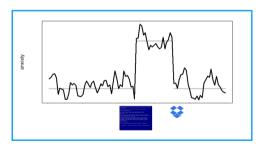
- 1. Sudden change
- 2. Smooth change





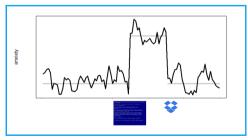
Two types of sudden change

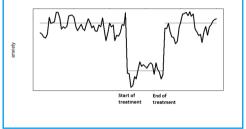
1. Sudden change at a unknown moment



Two types of sudden change

- 1. Sudden change at a unknown moment
- 2. Sudden change at an known moment





Goal of this talk

Thus, the dynamics in an AR(1) model can change

- Suddenly at known moment(s)
- Suddenly at unknown moment(s)
- Smoothly (all the time)

(Many) models for one of these cases already exist.

My goal of the day: to introduce a model that combines all three cases.

Models for sudden change

Many different models exist, e.g.

- Markov switching (regime change) models (next slide)
- Models from in Statistical Quality Control (e.g. the CUSUM procedure; Page, 1954)
- · Models from Deep Learning (e.g. Krylov subspace models; Ide & Tsuda, 2007)
- Models from Machine Learning (e.g. relative density-ratio method; Sugiyama, Suzuki, & Kanamori, 2012)
- · (really, a *lot* of alternatives)

Regime Switching Models

Use dummy-variable

$$D_{i,t} = \begin{cases} 0 & \text{in regime A at time } t < i \\ 1 & \text{in regime B at time } t \ge i \end{cases}$$

for some *i*.

Regime Switching Models

Use dummy-variable

$$D_{i,t} = \begin{cases} 0 & \text{in regime A at time } t < i \\ 1 & \text{in regime B at time } t \ge i \end{cases}$$

for some i.

Then apply model

$$\begin{cases} y_t = \mu_{D_{0,t}} + \phi_{D_{0,t}} y_{t-1} + \varepsilon_t & \text{Regime A} \\ y_t = \mu_{D_{1,t}} + \phi_{D_{1,t}} y_{t-1} + \varepsilon_t & \text{Regime B} \end{cases}$$

(cf. Hamilton, 1989)

· Straightforward if *i* known. Apply HMM to find *i* when unknown.

Model for smooth change

For this, we use the Time-Varying Autoregressive Model (TV-AR) by Bringmann et al. (Psychological Methods, 2017).

Model for smooth change

For this, we use the Time-Varying Autoregressive Model (TV-AR) by Bringmann et al. (Psychological Methods, 2017).

$$y_t = \mu_t + \phi_t y_{t-1} + \varepsilon_t$$

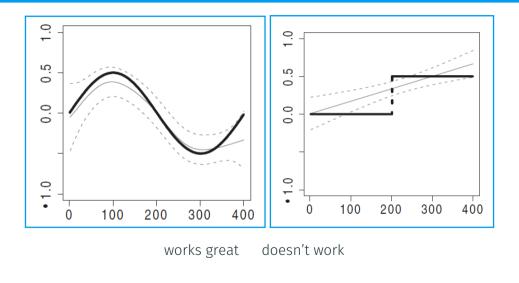
Model for smooth change

For this, we use the Time-Varying Autoregressive Model (TV-AR) by Bringmann et al. (Psychological Methods, 2017).

$$y_t = \mu_t + \phi_t y_{t-1} + \varepsilon_t$$

- μ_t and ϕ_t not fixed, yet are only allowed to vary smoothly: $\mu_t \approx \mu_{t+1}$ and $\phi_t \approx \phi_{t+1}$
- This is achieved by using Generalized Additive Models (Hastie & Tibshirani, 1990).

TV-AR model for smooth change



Our model - confirmatory analyses

Basic idea of our TV-AR-RS model:

Combine TV-AR's smooth parameters with Hamilton's RS idea:

$$y_t = (\mu_t + \mu_{D_{i,t}}) + (\phi_t + \phi_{D_{i,t}}) \times y_{t-1} + \varepsilon_t$$

(with $D_{i,t}$ a 0/1-variable)

Our model - confirmatory analyses

Basic idea of our TV-AR-RS model:

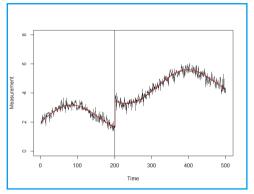
Combine TV-AR's smooth parameters with Hamilton's RS idea:

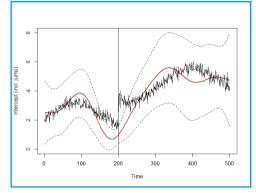
$$y_t = (\mu_t + \mu_{D_{i,t}}) + (\phi_t + \phi_{D_{i,t}}) \times y_{t-1} + \varepsilon_t$$

(with $D_{i,t}$ a 0/1-variable)

mcgv-package provides curves for μ_t and ϕ_t including CI, and point estimates for μ_D , ϕ_D including SE, and model fit statistics. All you need.

TV-AR-RS model – confirmatory analyses – example



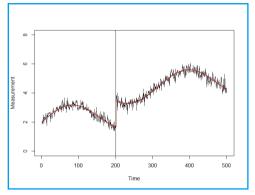


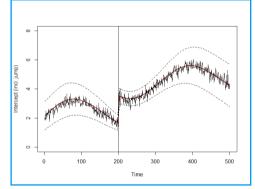
Simulated data

TV-AR model

TV-AR model: AIC = 173.42

TV-AR-RS model - confirmatory analyses - example





Simulated data

TV-AR model: AIC = 173.42

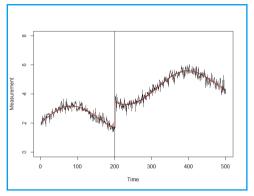
Correct TV-AR-RS model:

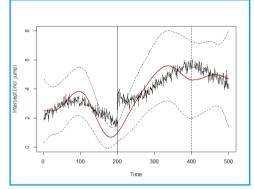
TV-AR-RS with correct jump

$$AIC = 173.42$$

AIC = 64.63,
$$\hat{\mu}_1$$
 = 1.88 (sd=.13)

TV-AR-RS model - confirmatory analyses - example





Simulated data

TV-AR model:

Correct TV-AR-RS model: Incorrect TV-AR-RS model:

TV-AR-RS with correct jump

$$AIC = 173.42$$

AIC = 64.63,
$$\hat{\mu}_1$$
 = 1.88 (sd=.13)

AIC = 175.27,
$$\hat{\mu}_1$$
 = .04 (sd=.13)

TV-AR-RS model – exploratory analyses

Sketch of the algorithm:

1. Compute AIC⁽⁰⁾ for model $y_t = \mu_t + \phi_t \times y_{t-1} + \varepsilon_t$

TV-AR-RS model - exploratory analyses

Sketch of the algorithm:

- 1. Compute AIC⁽⁰⁾ for model $y_t = \mu_t + \phi_t \times y_{t-1} + \varepsilon_t$
- 2. $\forall j \in \{2, ..., T-1\}$ compute $AIC_j^{(1)}$ for $y_t = \mu_t + \mu_{D_{j,t}} + (\phi_t + \phi_{D_{j,t}}) \times y_{t-1} + \varepsilon_t$

TV-AR-RS model – exploratory analyses

Sketch of the algorithm:

- 1. Compute AIC⁽⁰⁾ for model $y_t = \mu_t + \phi_t \times y_{t-1} + \varepsilon_t$
- 2. $\forall j \in \{2, ..., T-1\}$ compute $AIC_j^{(1)}$ for $y_t = \mu_t + \mu_{D_{j,t}} + (\phi_t + \phi_{D_{j,t}}) \times y_{t-1} + \varepsilon_t$
- 3. Select $i = \operatorname{argmin}_{j} \operatorname{AIC}_{j}^{(1)}$

TV-AR-RS model – exploratory analyses

Sketch of the algorithm:

- 1. Compute AIC⁽⁰⁾ for model $y_t = \mu_t + \phi_t \times y_{t-1} + \varepsilon_t$
- 2. $\forall j \in \{2, ..., T-1\}$ compute $AIC_j^{(1)}$ for $y_t = \mu_t + \mu_{D_{j,t}} + (\phi_t + \phi_{D_{j,t}}) \times y_{t-1} + \varepsilon_t$
- 3. Select $i = \operatorname{argmin}_{j} \operatorname{AIC}_{j}^{(1)}$
- 4. IF $AIC_i^{(1)} < AIC^{(0)} 10$ THEN select point i as new change point ELSE stop

TV-AR-RS model - exploratory analyses

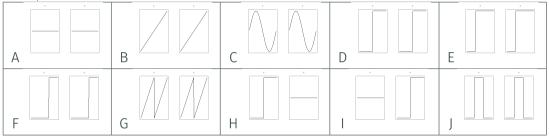
Sketch of the algorithm:

- 1. Compute AIC⁽⁰⁾ for model $y_t = \mu_t + \phi_t \times y_{t-1} + \varepsilon_t$
- 2. $\forall j \in \{2, ..., T-1\}$ compute $AIC_j^{(1)}$ for $y_t = \mu_t + \mu_{D_{j,t}} + (\phi_t + \phi_{D_{j,t}}) \times y_{t-1} + \varepsilon_t$
- 3. Select $i = \operatorname{argmin}_{j} \operatorname{AIC}_{j}^{(1)}$
- 4. IF $AIC_i^{(1)} < AIC^{(0)} 10$ THEN select point i as new change point ELSE stop
- 5. Re-run steps 2 4 to find subsequent change points.

(If desired, replace AIC by BIC or any other fit measure.)

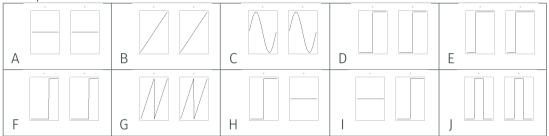
Simulation: design

Multiple conditions:



Simulation: design

Multiple conditions:



Furthermore:

- Small or large regime switches
- Length of time series: T = 30, 60, 100, 200, 400, 600, 1000

Fully crossed design, 100(0) replications per cell.

Simulation: performance measures

I. How much better (or worse) is the model with correct change point, compared to model without change point?

$$\overline{AIC_{j}^{(1)}-AIC^{(0)}}$$

Simulation: performance measures

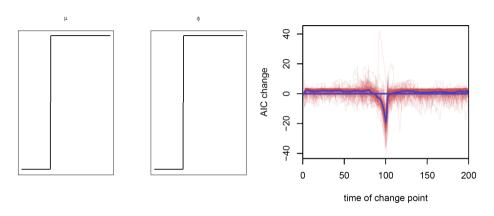
I. How much better (or worse) is the model with correct change point, compared to model without change point?

$$\overline{AIC_j^{(1)}-AIC^{(0)}}$$

II. Is the change point placed at the right location?

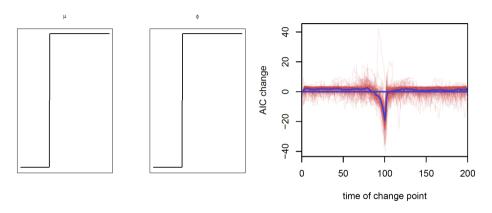
$$Median|i - j|$$

Simulation: example



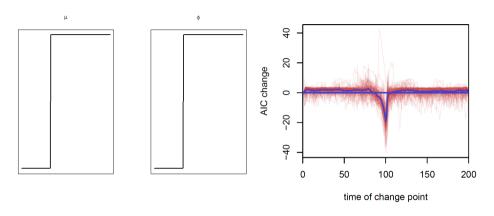
T= 200, change in μ : 2sd, change in ϕ : 0.7. R= 100 replications.

Simulation: example



T= 200, change in μ : 2sd, change in ϕ : 0.7. R= 100 replications. AIC gain at J= 100: m= 18.89, s= 7.26.

Simulation: example



T= 200, change in μ : 2sd, change in ϕ : 0.7. R= 100 replications. AIC gain at J= 100: m= 18.89, s= 7.26. 12% of cases: jump at T= 100, 61%: jump at 99 or 101.

Mean AIC gain when the changes at the change point are small.

Cond.	n = 30	60	100	200	400	600	1000
А	1	2	2	2	2	2	2
В	1	2	2	2	2	2	2
С	1	1	1	1	2	2	2
D	1	-1	-2	-5	-10	-14	-23
Е	-0	-0	-2	-5	-11	-16	-22
F	-0	-1	-3	-5	-10	-15	-23
G	-1	-1	-3	-7	-12	-14	-20
Н	-0	-1	-2	-3	-6	-10	-14
1	1	2	1	1	-1	-2	-4
J(L)	0	-1	-2	-4	-7	-9	-16
J(R)	-1	-1	-1	-2	-5	-9	-13

Mean AIC gain when the changes at the change point are large.

Cond.	n = 30	60	100	200	400	600	1000
А	0	1	1	1	2	2	2
В	1	2	2	2	2	2	2
С	0	1	1	2	2	2	2
D	-1	-5	-10	-21	-33	-45	-66
Е	-1	-4	-9	-19	-34	-44	-66
F	-0	-5	-11	-21	-32	-42	-62
G	-10	-21	-27	-40	-57	-67	-85
Н	-1	-3	-5	-11	-16	-22	-29
I	1	-2	-6	-16	-25	-34	-55
J(L)	-1	-3	-6	-11	-23	-32	-51
J(R)	-17	-25	-4	-12	-13	-57	-41

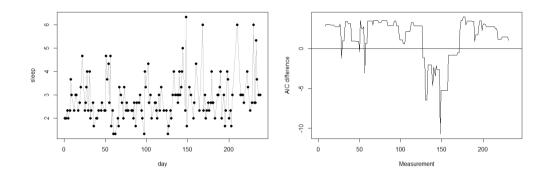
Median absolute 'miss' (|i-j|) when the changes at the change point are small.

Cond.	n = 30	60	100	200	400	600	1000
D	5	10.5	22.5	2.5	2	2	1
Е	7	11	18	7	2	2	1.5
F	6	9	8	4	2	2	1
G	5	10.5	6.5	1.5	1.5	2	2
Н	5.5	9	20	22.5	4	2	3
1	7	14.5	26	49.5	106.5	67	69.5

Median absolute 'miss' (|i-j|) when the changes at the change point are large.

_								
	Cond.	n = 30	60	100	200	400	600	1000
	D	6	5	1	1	1	1	1
	Е	5	7.5	2	1	1	1	1
	F	8.5	4	1	1	1	1	1
	G	2	1	1	1	1	1	1
	Н	6	9.5	13	1	1	1	1
	1	7	10.5	2.5	1	1	1	1
-								

Example: n = 1 sleep quality data



At day 148 significant jump: AIC-gain 10.67 points. Change in μ (p=.038) and change in ϕ (p=.026).

Conclusions

- Our VAR model can deal with smooth and sudden change in dynamics.
- Changes in ϕ harder to detect than those in μ .
- · Can be used for both confirmatory and exploratory purposes.
- · Model works, but only for sufficiently large data sets:
 - Large 'jump': at least T > 60
 - Small 'jump': at least T > 200

Key references:

- · Albers & Bringmann (2018). Changing Individuals. In preparation.
- Bringmann, Hamaker, Vigo, Aubert, Borsboom, Tuerlinckx (2017), Changing Dynamics.
 Psychological Methods
- Hamilton (1989). A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica
- · Kossakowski, Groot, Haslbeck, Borsboom, Wichers (2017). Journal of Open Psychology Data