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The basic AR(1) model

• Series of (psychological) measurements y1, . . . , yT.
• Simplest form of the model:

yt = µ+ ϕyt−1 + εt, (t = 2, . . . , T)

• Assume (for now) stationarity (|ϕ| < 1) and εi ∼ N(0, σ2)

• Here, µ and ϕ are fixed: they can’t change.
• But people do change.
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Two types of change in AR(1) models

1. Sudden change

2. Smooth change
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Two types of sudden change

1. Sudden change at a unknown moment
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Goal of this talk

Thus, the dynamics in an AR(1) model can change

• Suddenly – at known moment(s)
• Suddenly – at unknown moment(s)
• Smoothly – (all the time)

(Many) models for one of these cases already exist. A model that combines these
three cases in one is new.

My goal of the day: to introduce this model to you
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Models for sudden change

Many different models exist, e.g.

• Markov switching (regime change) models (next slide)
• Models from in Statistical Quality Control (e.g. the CUSUM procedure; Page,
1954)

• Models from Deep Learning (e.g. Krylov subspace models; Ide & Tsuda, 2007)
• Models from Machine Learning (e.g. relative density-ratio method; Sugiyama,
Suzuki, & Kanamori, 2012)

• . . . . . . . . . (really, a lot of alternatives)
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Regime Switching Models

• Use dummy-variable

Di,t =
{
0 in regime 0 at time t < i
1 in regime 1 at time t ≥ i

for some i.

• Then apply model

yt = µDi,t + ϕyt−1 + εt, (t = 2, . . . , T) or

yt = µDi,t + ϕDi,t(yt − µDi,t−1) + εt, (t = 2, . . . , T)

with µ0 ̸= µ1 (Hamilton, 1989)
• Straightforward if i known. Apply HMM to find i when unknown.
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Model for smooth change

For this, we use the Time-Varying Autoregressive Model (TV-AR) by Bringmann et
al. (Psychological Methods, 2017).

yt = µt + ϕtyt−1 + εt

• µt and ϕt not fixed, yet are only allowed to vary smoothly:
µt ≈ µt+1 and ϕt ≈ ϕt+1

• This is achieved by using Generalized Additive Models (Hastie & Tibshirani,
1990) with thin-plate splines; and the R-package mcgv (Wood, 2011)
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TV-AR model for smooth change

works great doesn’t work
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Our model – confirmatory analyses

Basic idea of our TV-AR-RS model:

Combine TV-AR’s smooth parameters with Hamilton’s RS idea:

yt = µt + µDi,t + (ϕt + ϕDi,t)× yt−1 + εt

(with µ0 = ϕ0 = 0)

mcgv-package provides curves for µt and ϕt including CI, and point estimates for
µD, ϕD including SE, and model fit statistics. All you need.
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TV-AR-RS model – confirmatory analyses – example

Simulated data TV-AR model
TV-AR model: AIC = 173.42

Correct TV-AR-RS model: AIC = 64.63, µ̂1 = 1.88 (sd=.13)
Incorrect TV-AR-RS model: AIC = 175.27, µ̂1 = .04 (sd=.13)
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TV-AR-RS model – confirmatory analyses – example

Simulated data TV-AR-RS with correct jump
TV-AR model: AIC = 173.42

Correct TV-AR-RS model: AIC = 64.63, µ̂1 = 1.88 (sd=.13)

Incorrect TV-AR-RS model: AIC = 175.27, µ̂1 = .04 (sd=.13)
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TV-AR-RS model – exploratory analyses

Sketch of the algorithm:

1. Compute AIC(0) for model yt = µt + ϕt × yt−1 + εt

2. ∀ j ∈ {2, . . . , T− 1} compute AIC(1)j for yt = µt + µDj,t + (ϕt + ϕDj,t)× yt−1 + εt

3. Select i = argminj AIC
(1)
j

4. IF AIC(1)i < AIC(0) − 10 THEN select point i as new change point ELSE stop

5. Re-run steps 2 – 4 to find subsequent change points.
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Simulation results – I

Real AR(1) model: no jumps detected

Intercept: AIC change:

Autoregression:

13



Simulation results – II

Real TV-AR(1) model: no jumps detected

Intercept: AIC change:

Autoregression:
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Simulation results – III

TV-AR-RS(1) with ∆µ = 1sd
T=200 is insufficient

Intercept: AIC change:

Autoregression:
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Simulation results – IV

TV-AR-RS(1) with ∆µ = 2sd
T=200 is sufficient

Intercept: AIC change:

Autoregression:
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Simulation results – V

TV-AR-RS(1) with ∆ϕ = .3
T=200 is insufficient

Intercept: AIC change:

Autoregression:
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Simulation results – VI

TV-AR-RS(1) with ∆ϕ = .7
T=200 is sufficient

Intercept: AIC change:

Autoregression:
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Simulation results – VII

Finding multiple jumps? Yes we can!

Intercept: AIC change:

Autoregression:
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Example: Daily temperature in Groningen/Eelde, 2016
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Conclusions

• We presented an elegant model that can deal with smooth and sudden
change in dynamics.

• Can be used for both confirmatory and exploratory purposes
• Once finished, we will provide R-code

• Model works, but T needs to be large to exploratory detect sudden jumps
• Work in progress - still dotting the ι’s. . .

Key references:

• Bringmann, Hamaker, Vigo, Aubert, Borsboom, Tuerlinckx (2017), Changing Dynamics.
Psychological Methods

• Hamilton (1989). A new approach to the economic analysis of nonstationary time series and
the business cycle, Econometrica

• Royal Netherlands Meteorological Institute (KNMI), www.knmi.nl, for the data.
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