

The basic AR(1) model

- Series of (psychological) measurements y_1, \ldots, y_T .
- · Simplest form of the model:

$$y_t = \mu + \phi y_{t-1} + \varepsilon_t, \quad (t = 2, ..., T)$$

· Assume (for now) stationarity ($|\phi| <$ 1) and $\varepsilon_i \sim N(0,\sigma^2)$

The basic AR(1) model

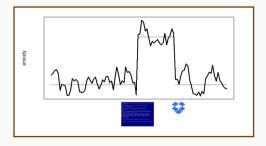
- Series of (psychological) measurements y_1, \ldots, y_T .
- · Simplest form of the model:

$$y_t = \mu + \phi y_{t-1} + \varepsilon_t, \quad (t = 2, ..., T)$$

- · Assume (for now) stationarity ($|\phi| < 1$) and $\varepsilon_i \sim N(0, \sigma^2)$
- Here, μ and ϕ are fixed: they can't change.
- But people do change.

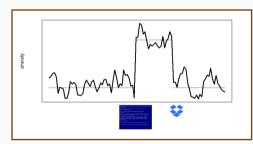
Two types of change in AR(1) models

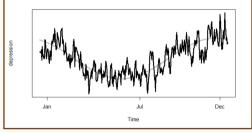
1. Sudden change



Two types of change in AR(1) models

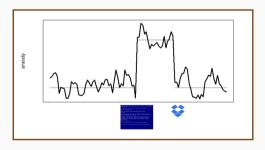
- 1. Sudden change
- 2. Smooth change





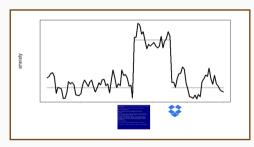
Two types of sudden change

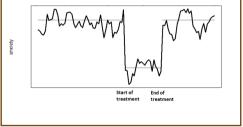
1. Sudden change at a unknown moment



Two types of sudden change

- 1. Sudden change at a unknown moment
- 2. Sudden change at an known moment





Goal of this talk

Thus, the dynamics in an AR(1) model can change

- Suddenly at known moment(s)
- Suddenly at unknown moment(s)
- Smoothly (all the time)

(Many) models for one of these cases already exist. A model that combines these three cases in one is new.

My goal of the day: to introduce this model to you

Models for sudden change

Many different models exist, e.g.

- Markov switching (regime change) models (next slide)
- Models from in Statistical Quality Control (e.g. the CUSUM procedure; Page, 1954)
- · Models from Deep Learning (e.g. Krylov subspace models; Ide & Tsuda, 2007)
- Models from Machine Learning (e.g. relative density-ratio method; Sugiyama, Suzuki, & Kanamori, 2012)
- · (really, a lot of alternatives)

Regime Switching Models

Use dummy-variable

$$D_{i,t} = \begin{cases} 0 & \text{in regime 0 at time } t < i \\ 1 & \text{in regime 1 at time } t \ge i \end{cases}$$

for some *i*.

Regime Switching Models

Use dummy-variable

$$D_{i,t} = \begin{cases} 0 & \text{in regime 0 at time } t < i \\ 1 & \text{in regime 1 at time } t \ge i \end{cases}$$

for some i.

Then apply model

$$y_t = \mu_{D_{i,t}} + \phi y_{t-1} + \varepsilon_t, \quad (t = 2, ..., T) \quad \text{or}$$
 $y_t = \mu_{D_{i,t}} + \phi_{D_{i,t}} (y_t - \mu_{D_{i,t-1}}) + \varepsilon_t, \quad (t = 2, ..., T)$

with $\mu_0 \neq \mu_1$ (Hamilton, 1989)

Regime Switching Models

Use dummy-variable

$$D_{i,t} = \begin{cases} 0 & \text{in regime 0 at time } t < i \\ 1 & \text{in regime 1 at time } t \ge i \end{cases}$$

for some i.

Then apply model

$$y_t = \mu_{D_{i,t}} + \phi y_{t-1} + \varepsilon_t, \quad (t = 2, ..., T) \quad \text{or}$$
 $y_t = \mu_{D_{i,t}} + \phi_{D_{i,t}} (y_t - \mu_{D_{i,t-1}}) + \varepsilon_t, \quad (t = 2, ..., T)$

with $\mu_0 \neq \mu_1$ (Hamilton, 1989)

· Straightforward if i known. Apply HMM to find i when unknown.

Model for smooth change

For this, we use the Time-Varying Autoregressive Model (TV-AR) by Bringmann et al. (Psychological Methods, 2017).

Model for smooth change

For this, we use the Time-Varying Autoregressive Model (TV-AR) by Bringmann et al. (Psychological Methods, 2017).

$$y_t = \mu_t + \phi_t y_{t-1} + \varepsilon_t$$

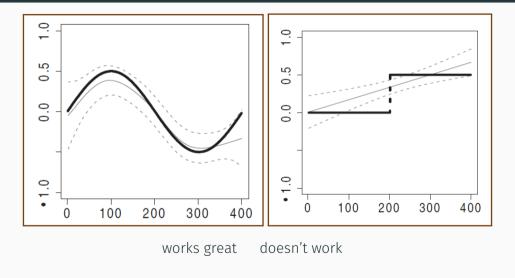
Model for smooth change

For this, we use the Time-Varying Autoregressive Model (TV-AR) by Bringmann et al. (Psychological Methods, 2017).

$$y_t = \mu_t + \phi_t y_{t-1} + \varepsilon_t$$

- μ_t and ϕ_t not fixed, yet are only allowed to vary smoothly: $\mu_t \approx \mu_{t+1}$ and $\phi_t \approx \phi_{t+1}$
- This is achieved by using Generalized Additive Models (Hastie & Tibshirani, 1990) with thin-plate splines; and the R-package *mcgv* (Wood, 2011)

TV-AR model for smooth change



Our model – confirmatory analyses

Basic idea of our TV-AR-RS model:

Combine TV-AR's smooth parameters with Hamilton's RS idea:

$$y_t = \mu_t + \mu_{D_{i,t}} + (\phi_t + \phi_{D_{i,t}}) \times y_{t-1} + \varepsilon_t$$

(with
$$\mu_0 = \phi_0 = 0$$
)

Our model – confirmatory analyses

Basic idea of our TV-AR-RS model:

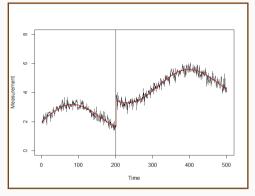
Combine TV-AR's smooth parameters with Hamilton's RS idea:

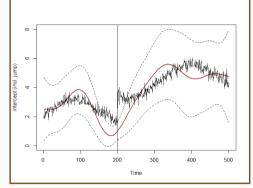
$$y_t = \mu_t + \mu_{D_{i,t}} + (\phi_t + \phi_{D_{i,t}}) \times y_{t-1} + \varepsilon_t$$

(with
$$\mu_0 = \phi_0 = 0$$
)

mcgv-package provides curves for μ_t and ϕ_t including CI, and point estimates for μ_D , ϕ_D including SE, and model fit statistics. All you need.

TV-AR-RS model - confirmatory analyses - example



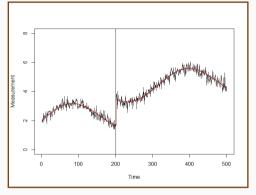


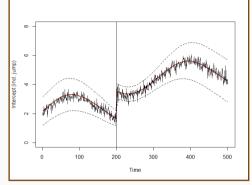
Simulated data

TV-AR model

TV-AR model: AIC = 173.42

TV-AR-RS model - confirmatory analyses - example





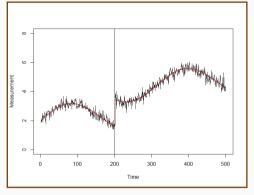
Simulated data

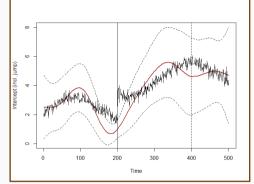
TV-AR model: AIC = 173.42

TV-AR-RS with correct jump

Correct TV-AR-RS model: AIC = 64.63, $\hat{\mu}_1 = 1.88 \text{ (sd=.13)}$

TV-AR-RS model – confirmatory analyses – example





Simulated data

TV-AR model: AIC = 173.42

Correct TV-AR-RS model:

Incorrect TV-AR-RS model:

TV-AR-RS with correct jump

AIC = 64.63, $\hat{\mu}_1$ = 1.88 (sd=.13)

AIC = 175.27, $\hat{\mu}_1 = .04$ (sd=.13)

Sketch of the algorithm:

1. Compute AIC⁽⁰⁾ for model $y_t = \mu_t + \phi_t \times y_{t-1} + \varepsilon_t$

- 1. Compute AIC⁽⁰⁾ for model $y_t = \mu_t + \phi_t \times y_{t-1} + \varepsilon_t$
- 2. $\forall j \in \{2, ..., T-1\}$ compute $AIC_j^{(1)}$ for $y_t = \mu_t + \mu_{D_{j,t}} + (\phi_t + \phi_{D_{j,t}}) \times y_{t-1} + \varepsilon_t$

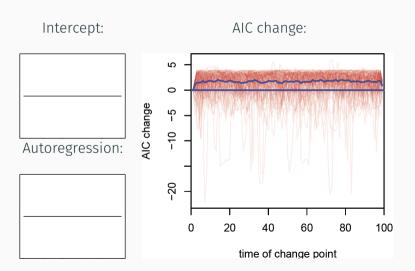
- 1. Compute AIC⁽⁰⁾ for model $y_t = \mu_t + \phi_t \times y_{t-1} + \varepsilon_t$
- 2. $\forall j \in \{2, ..., T-1\}$ compute $AIC_j^{(1)}$ for $y_t = \mu_t + \mu_{D_{j,t}} + (\phi_t + \phi_{D_{j,t}}) \times y_{t-1} + \varepsilon_t$
- 3. Select $i = \operatorname{argmin}_{j} \operatorname{AIC}_{j}^{(1)}$

- 1. Compute AIC⁽⁰⁾ for model $y_t = \mu_t + \phi_t \times y_{t-1} + \varepsilon_t$
- 2. $\forall j \in \{2, ..., T-1\}$ compute $AIC_j^{(1)}$ for $y_t = \mu_t + \mu_{D_{j,t}} + (\phi_t + \phi_{D_{j,t}}) \times y_{t-1} + \varepsilon_t$
- 3. Select $i = \operatorname{argmin}_{j} \operatorname{AIC}_{j}^{(1)}$
- 4. IF $AIC_i^{(1)} < AIC^{(0)} 10$ THEN select point i as new change point ELSE stop

- 1. Compute AIC⁽⁰⁾ for model $y_t = \mu_t + \phi_t \times y_{t-1} + \varepsilon_t$
- 2. $\forall j \in \{2, ..., T-1\}$ compute $AIC_j^{(1)}$ for $y_t = \mu_t + \mu_{D_{j,t}} + (\phi_t + \phi_{D_{j,t}}) \times y_{t-1} + \varepsilon_t$
- 3. Select $i = \operatorname{argmin}_{j} \operatorname{AIC}_{j}^{(1)}$
- 4. IF $AIC_i^{(1)} < AIC^{(0)} 10$ THEN select point *i* as new change point ELSE stop
- 5. Re-run steps 2 4 to find subsequent change points.

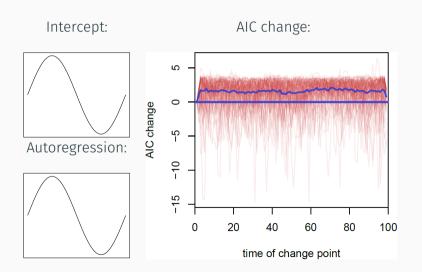
Simulation results - I

Real AR(1) model: no jumps detected

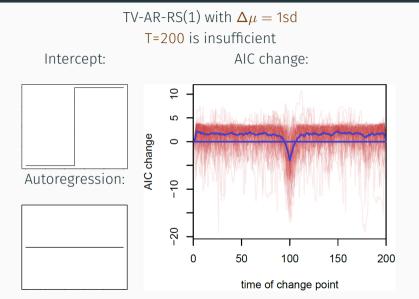


Simulation results - II

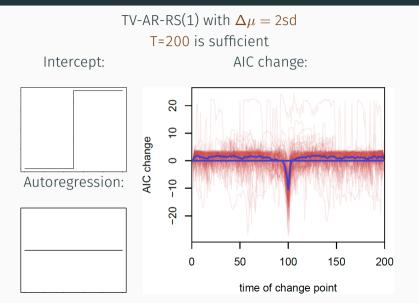
Real TV-AR(1) model: no jumps detected



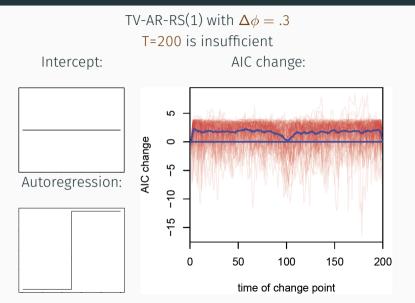
Simulation results - III



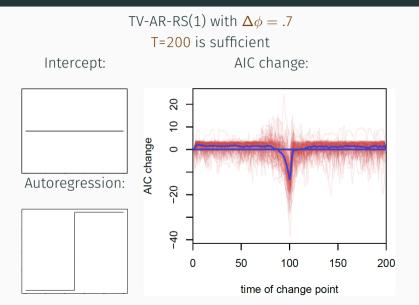
Simulation results - IV



Simulation results - V

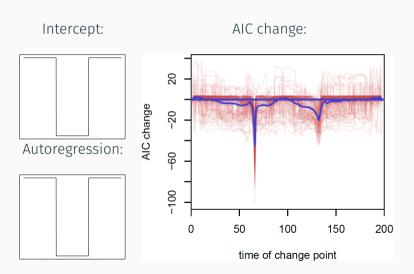


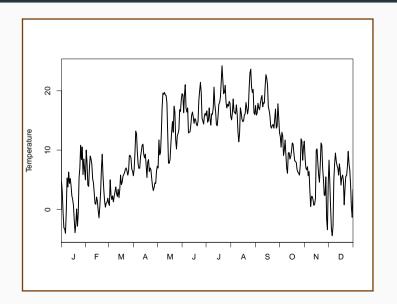
Simulation results - VI



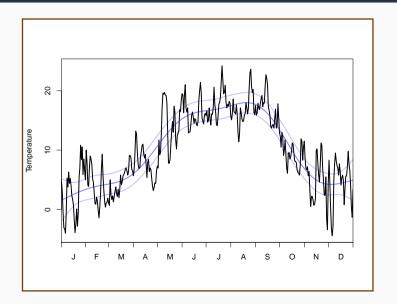
Simulation results - VII

Finding multiple jumps? Yes we can!

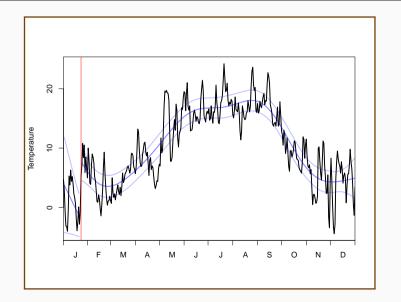




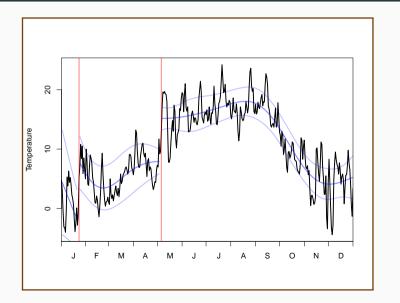
jumps AIC



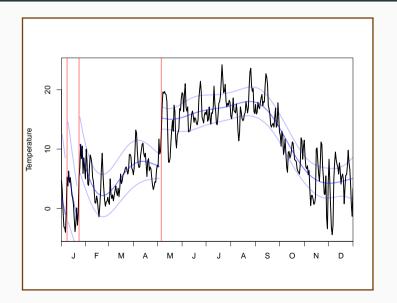
jumps AIC 0 1849



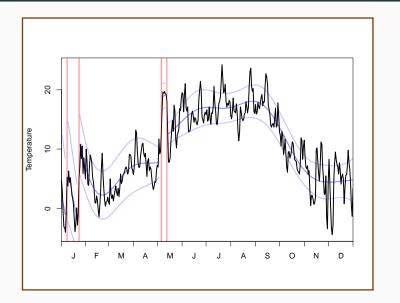
jumps AIC 0 1849 1 1814



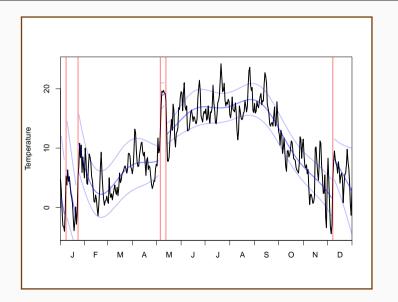
# jumps	AIC
0	1849
1	1814
2	1786



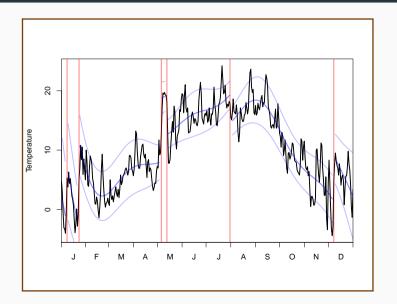
# jumps	AIC
0	1849
1	1814
2	1786
3	1747



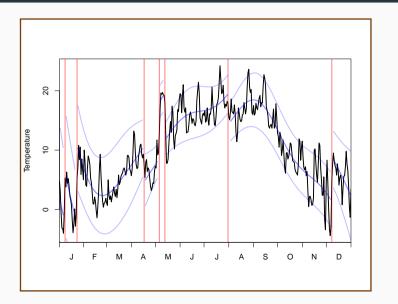
# jumps	AIC
0	1849
1	1814
2	1786
3	1747
4	1724



# jumps	AIC
0	1849
1	1814
2	1786
3	1747
4	1724
5	1699



# jumps	AIC
0	1849
1	1814
2	1786
3	1747
4	1724
5	1699
6	1683



# jumps	AIC
0	1849
1	1814
2	1786
3	1747
4	1724
5	1699
6	1683
7	1665

Conclusions

- We presented an elegant model that can deal with smooth and sudden change in dynamics.
- · Can be used for both confirmatory and exploratory purposes
- · Once finished, we will provide R-code
- Model works, but T needs to be large to exploratory detect sudden jumps
- Work in progress still dotting the ι 's...

Key references:

- Bringmann, Hamaker, Vigo, Aubert, Borsboom, Tuerlinckx (2017), Changing Dynamics.
 Psychological Methods
- Hamilton (1989). A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica
- · Royal Netherlands Meteorological Institute (KNMI), www.knmi.nl, for the data.