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A B S T R A C T

When designing a study, the planned sample size is often based on power analyses. One way to choose an effect
size for power analyses is by relying on pilot data. A-priori power analyses are only accurate when the effect size
estimate is accurate. In this paper we highlight two sources of bias when performing a-priori power analyses for
between-subject designs based on pilot data. First, we examine how the choice of the effect size index (η2, ω2 and
ε2) affects the sample size and power of the main study. Based on our observations, we recommend against the
use of η2 in a-priori power analyses. Second, we examine how the maximum sample size researchers are willing
to collect in a main study (e.g. due to time or financial constraints) leads to overestimated effect size estimates in
the studies that are performed. Determining the required sample size exclusively based on the effect size esti-
mates from pilot data, and following up on pilot studies only when the sample size estimate for the main study is
considered feasible, creates what we term follow-up bias. We explain how follow-up bias leads to underpowered
main studies.

Our simulations show that designing main studies based on effect sizes estimated from small pilot studies does
not yield desired levels of power due to accuracy bias and follow-up bias, even when publication bias is not an
issue. We urge researchers to consider alternative approaches to determining the sample size of their studies, and
discuss several options.

1. Introduction

It is common practice in psychological and behavioral research to
express the results of a quantitative study in at least two numbers: One
expressing the probability or likelihood of data under specified statis-
tical models, usually through a p-value or Bayes factor, and one ex-
pressing the magnitude of the effect, often through a (standardized)
effect size (ES). Reporting effect size estimates serves various purposes,
one of which is facilitating cumulative science by allowing other re-
searchers to use the effect size estimate in a-priori power analyses
(Cohen, 1988). Power analyses can be used to design studies that have a
desired probability of observing a statistically significant effect, as-
suming there is a true effect of a specified size. However, a-priori power
analyses are only accurate when the effect size estimate is accurate. It
has been pointed out that effect sizes reported in the literature are
known to be inflated due to publication bias, and this widespread bias

in reported effect sizes is a challenge when performing a-priori power
analyses based on published research.

In this manuscript, we focus on two other sources of bias in power
analyses that play an important role in power analysis even when
publication bias and researchers' degrees of freedom do not influence
effect size estimates (e.g., when researchers perform their own pilot
study). These sources of bias point out clear limitations of the common
practice to use the effect size from a pilot study to determine the sample
size of a follow-up study through an a-priori power analysis. First, we
will discuss the relatively straightforward matter of the impact of a
biased effect size estimator (η2), compared to less biased effect size
estimators (ε2 and ω2) on the sample size estimate in power analyses.
Second, we examine a source of bias which we refer to as follow-up bias.
Effect size estimates vary around the true effect size. Even without
publication bias, researchers are more likely to follow-up on initial
studies that yielded higher effect size estimates than initial studies that
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yielded lower effect size estimates (cf. Greenwald, 1975), simply be-
cause these studies require less resources to observe a statistically sig-
nificant result in the expected direction. We examine how this under-
standable behavior leads to an overestimation of the true effect size, on
average, when performing a-priori power analyses, and thus leads to
follow-up studies that are underpowered. Based on these observations,
we argue against recent recommendations (Sakaluk, 2016) to use small
pilot studies to explore effects. In the discussion, we offer some general
recommendations to design well-powered studies.

2. Eta-squared, Epsilon-squared, and Omega-squared

In experimental psychology, it is extremely common to perform
studies where participants are randomly assigned to different condi-
tions, and analyze the results using analysis of variance (ANOVA) or
(unpaired) t-tests (where a t-test is mathematically identical to a one-
way ANOVA with two groups). We will illustrate our main points using
ANOVA and the related effect sizes, but our conclusions generalize to
other effect sizes and statistical tests. In one-way ANOVA, all analyses
are based on the following decomposition of the variance. The total
variance of all measurements together, σT2, is split into a part that can
be attributed to group-membership (σB2) and a part that can not (σW2):

= +σ σ σ .T B W
2 2 2

The subscripts W, B, and T indicate ‘within’ samples, ‘between’
samples, and ‘total’. Equivalently, one can decompose the so-called
sums of squares:

= +SS SS SS .T B W

One of the most common effect size indices in one-way ANOVA is
eta-squared (η2), which describes the proportion of variance that is
explained by group membership. It dates back to {Citation}Pearson
(1911), who introduced it in a regression context, and to Fisher (1928),
who used it in the ANOVA context. In statistical packages such as SPSS,
eta-squared is the default effect size measure. Eta-squared is an up-
wardly biased estimate of the true population effect size, and two al-
ternative effect size indices have been suggested that are less biased,
namely epsilon-squared (ε2, Kelley, 1935) and omega-squared (ω2,
Hays, 1963). For background reading on these (and other) indices, we
refer to Levine and Hullett (2002), Okada (2013) and McGrath and
Meyer (2006), and the references therein. Eta-squared, epsilon-squared,
and omega-squared are defined as follows4:
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where, using standard ANOVA-notation, SS, MS and df denote the sum-
of-squares, mean sum-of-squares, and degrees of freedom. From these
effect size estimates, the well-known Cohen's d and Cohen's f can be
estimated (Cohen, 1988). For population effect sizes Cohen (1988, p.
276) states that d = 2f with f2=η2/(1−η2). An unbiased estimate of
Cohen's d is called Hedges' g (see Lakens, 2013), and recommendations
in this article concerning the use of ω2 and ε2 instead of η2 extend to the
use of Hedges' g instead of Cohen's d.

Alternative formulas for these effect sizes, where the computation is
based only on the F-value and the degrees of freedom, are given in
Appendix A.

These indices are estimators of the unknown true population effect
size and, as such, contain possible bias and variability. It is well-known
that η2 has more bias than the other two indices, but the other two
indices have more variability (cf. Albers, 2015; Lakens, 2015; Okada,
2013). The amount of bias and variability of these indices depends on
the size of the sample and the true population effect size. When looking
at performance measures that take both bias and variability into ac-
count, such as the (root) mean squared error, none of the three indices
is uniformly optimal and very little is known on in which situations one
method outperforms another. The first goal of the current manuscript is
to provide practical guidelines on how to deal with these different effect
size estimates when used in a-priori power analysis based on the effect
size estimate in a previous study.

3. Bias in power analyses

The sampling distributions of η2, ω2 and ε2 are considerably skewed
(shown in Fig. 1 for η2). Furthermore, the smaller the sample size, the
more variable the effect size estimate is. Statisticians have warned
against using effect size estimates from small samples in power analyses
(Leon, Davis, & Kraemer, 2011). The two main reasons researchers
should be careful when using effect sizes from the published literature
in power analyses is that effect size estimates from small studies are
inaccurate, and that publication bias inflates effect sizes. At the same
time, many applied statistics texts recommend using effect sizes from
related studies reported in the literature to perform a power analysis
(e.g., Fritz, Morris, & Richler, 2012; Polit & Beck, 2004; Sawyer & Ball,
1981). In many cases, this is the only information researchers have
about the possible size of the effect they are interested in. For example,
the Reproducibility Project (Open Science Collaboration, 2015) relied
on the effect sizes observed in the original studies to perform power
analyses for replication studies.

The statistical power of a test depends on the true effect size, the
sample size, and the alpha level that is used. The goal of a power
analysis is to control Type II error rates, or to limit the probability of
observing a non-significant result, assuming there is an effect of a
specific size. In the presence of bias, researchers might unknowingly
increase the Type II error rate of their studies. Alternatives to a-priori
power analysis exists, such as deciding upon a smallest effect size of
interest and using this to determine the required sample size in a power
analysis (e.g. Lakens & Evers, 2014, Lang & Sesic, 2006, denoted the
‘minimal clinically important difference’ in medical research, Jäschke,
Singer, & Guyatt, 1989). Other researchers have suggested to perform
conservative power analyses (Perugini, Gallucci, & Costantini, 2014), or
to model and correct for bias (Taylor &Muller, 1996).

Nevertheless, researchers might believe that building on effect size

Fig. 1. Distribution of η2 for a between-subjects t-test with a sample size (per group) of
n = 50, and a medium true population effect size (η2 = 0.0588). The lower x-axis in-
dicates the n per group required to achieve .80 power based on the observed effect size
indicated by the upper x-axis. Reprinted from http://dx.doi.org/10.6084/m9.figshare.
4877414, CC-BY4.0.

4 Note that although these three indices are estimators, we adopt the usual convention
to denote them without a ‘hat’.
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estimates from their own pilot studies is a valid approach, given that
these effect size estimates are not influenced by publication bias. In this
article, we show that even without problematic research practices such
as publication bias or p-hacking, designing studies by relying on the
effect size from a pilot study when performing an a-priori power ana-
lysis will, on average, lead to underpowered designs. As our simulations
reveal, the deviation from the desired Type II error rate can be quite
substantial, showing that the use of effect sizes from pilot studies will
generally not be a good approach to designing future studies.

4. Follow-up bias

It is not uncommon that researchers perform a pilot study and use
the information from the pilot study to decide whether or not to carry
out a large scale follow-up study. The effect size in a pilot study is often
used to determine what the sample size in a follow-up study should be
based on an a-priori power analysis. This practice has been observed
(and criticized) by statisticians (e.g., Kraemer, Mintz, Noda,
Tinklenberg, & Yesavage, 2006), but as members of ethical review
boards and local research funding committees, both authors often see
that effect sizes used in power analyses are exclusively based on pilot
data. According to Wald (1945), this double sampling inspection pro-
cedure dates back to Dodge and Romig (1929).

The likelihood that researchers will perform a follow-up study after
a pilot study depends on how large the observed effect is, either ex-
pressed as a p-value, or a standardized effect size (for any given sample
size, the effect size and the p-value for a statistical test are directly
related). Researchers might decide to follow up on a study when the p-
value is small (e.g., p < 0.15) or equivalently, when the effect size is
large enough (e.g., η2 > 0.05). When a pilot study yields a very small
effect size estimate (or a very large p-value), power analysis will suggest
a sample size is needed that is so large that the study is unfeasible, given
limited resources. It could even be, when calculating ω2 or ε2, that the
estimated effect size is negative, in which case a power analysis cannot
be performed based on the observed effect size. Although researchers
might in principle be interested in the presence vs. absence of an effect
for purely theoretical reasons, in scientific practice they often have a
maximum number of participants they are willing to collect for a study,
either due to monetary or time constraints. Given any maximum sample
size, there is a corresponding smallest effect size of interest (SESOI) that
can be investigated with a decent level of power. Whenever effect size
estimates in pilot studies are smaller than the SESOI, researchers might
not to follow up on a line of research because they either suspect there
is no true effect, or because examining this effect would require too
much resources, if the effect size estimate in the pilot study is accurate.
If researchers only follow-up on studies with a high η2 estimate (e.g.,
η2 > 0.05, which requires 76 participants in each condition) the effect
sizes used in follow-up studies are on average upwardly biased, which
leads to underpowered studies.

For any true effect size the variation in the effect size estimate from
a pilot study can lead to follow-up bias: The tendency of researchers to
not follow up on pilot studies where effect size estimates are small (e.g.,
those estimates close to 0 in Fig. 1), whereas the researcher would have
followed-up on the pilot study if the true effect size had been known
and accurately estimated. Suppose that a researcher has to decide be-
tween studying the effects of intervention A or B, but does not have the
means to study both. Based on two pilot studies the researcher will
conclude that the effect of one intervention, e.g. A, is larger than in-
tervention B, and follow-up on Intervention A. This approach has re-
cently been advocated by Sakaluk (2016). However, in small pilot
studies, differences between effect sizes will themselves often not be
statistically significant, and effect size estimates have high variability.

Both follow-up bias and publication bias lead to a preference for
inflated effect sizes, but are not the same: Whereas follow-up bias is
created by the boundaries a researcher sets for her/himself – most
notably the maximum sample size they can collect – publication bias is

introduced through the judgement of others (other researchers, re-
viewers, or editors). Researchers themselves are more likely to continue
research lines where pilot studies estimate a larger compared to smaller
effect size estimate, because the a-priori power analysis will indicate
less resources are required to examine the effect with sufficient power.
Therefore, whenever researchers choose to perform a study after per-
forming a power analysis based on an observed effect size, an implicit
selection process has already taken place, in that the follow-up study
would not have been performed, had the pilot study revealed a tiny or
even negative effect size estimate. By only performing follow-up studies
when the observed effect size estimate falls on the right side of the
distribution in Fig. 1, the effect size estimate that is used in power
analyses is upwardly biased. Statistically, both publication bias and
follow-up bias mean the power analysis is based on a truncated effect
size distribution (Taylor &Muller, 1996).

In the first simulation study, where we aim to quantify the bias in
power analysis due to the choice of the effect size index, we follow the
procedure outlined in Appendix C. Power analysis for an ANOVA re-
quires an iterative approach (outlined in Appendix B). In this paper, we
apply this computational procedure as programmed in the R (R Core
Team, 2017) package pwr (version 1.1–3, Champely, 2015) to examine
how well the desired power is achieved as a function of the chosen
effect size index and the maximum sample size a researcher is willing to
collect, denoted by n⁎.

In practical scenario's, it is impossible to distinguish the bias due to
choice of effect size index from the follow-up bias; only the combined
bias will be observed. Therefore, we start with a somewhat unpractical
scenario, where the follow-up bias is practically zero. Thus, all observed
bias will be due to the choice of effect size index. Once this first si-
mulation study provides insight in how this type of bias operates, we
will consider realistic scenario's and study the added bias due to follow-
up bias in the second simulation study.

We first report the results of the simulation when using
n⁎ ≥ 100,000 as ‘unpractically large to follow up on’. This large value
means the follow-up bias in the simulation will be minimal, and allows
us to focus on the consequences of different effect size calculations η2,
ω2 and ε2. Subsequently, we examine the consequences for follow-up
bias given that most researchers have a maximum sample size per
condition they are willing to collect that is substantially lower than
100,000. There, we employ values for n⁎ that are more in line with
realistic situations in psychology.

5. Simulation design

For the simulation design, we varied the five parameters. First, in
line with Okada (2013), the number of groups (K) in the ANOVA was 2,
3, or 4. This implies the simulations include the t-test and One-Way
ANOVA with 3 and 4 groups. Second, the number of observations per
group in the pilot study (npilot) was either 10, 25 or 50. A minimum of
50 participants in each condition for the pilot study has been re-
commended (Harris, 2001; Simmons, Nelson, & Simonsohn, 2013), but
smaller sample sizes are still common (Fraley & Vazire, 2014). Third,
the true population effect size (ESp) was small (.0099), medium (.0588),
or large (.1379), in line with Cohen's (1988) rules of thumb and cor-
responding to using d = .2, .5, or .8, respectively. These values are also
consistent with Okada's (2013) simulation design. Fourth, the desired
power in the follow-up study, (0.9 or 0.8 power, i.e. β = 0.1 or 0.2).
Finally, for the pilot and follow-up studies we calculated three effect
size indices from the sample (ESs) used to estimate ESp, namely η2, ω2 or
ε2.

For all simulations, the significance level was set at α = 0.05. We
decided not to vary this parameter of the design as people almost ex-
clusively work with α= 0.05, and this would thus unnecessarily in-
crease the complexity of the simulation design. All five parameters were
fully crossed, yielding 3 × 3 × 3 × 3 × 2 = 162 combinations. For
each combination, R= 1,000,000 replications were drawn (the
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supplementary material shows this number to be sufficient); yielding a
total of 162 million simulated samples. A detailed breakdown of the
steps in the simulation design is provided in Appendix C and the cor-
responding R script is available at https://osf.io/zq9mg/.

6. Results

Consider a study designed to test a difference between two groups
(so, K = 2, a t-test). We will first focus on a true population effect size
that is large (ESp = .1379), before investigating small and medium ef-
fects. A pilot study, consisting of npilot measurements for each group, is
performed and the data from this sample is used to estimate the po-
pulation effect size (as long as the effect size estimate in the pilot study
is larger than 0 for ω2 and ε2). Power analyses are performed to com-
pute the sample size of the main study to reach a power of 0.8, as-
suming the effect size estimate from the pilot study is the true popu-
lation effect size. Subsequently, a data set of this size suggested by the
power analysis is generated, and the true power of the main study is
calculated. Note that in practice, the true population effect size and the
true power of studies is unknown, and these values are only known in
simulation studies.

Fig. 2 shows box plots and violin plots for effect sizes calculated
from the results of the main study, for all three effect size indices, based
on pilot studies with npilot 10, 25, or 50 participants (left facet, middle
facet, and right facet) in each condition. The simulation confirms that
the mean estimates (indicated by the black dots in Fig. 2) are very close
to the true population effect size of .1379 (indicated by the dashed
horizontal lines), with η2 having a (relatively small) positive bias. In
line with previous work (Okada, 2013), ω2 and ε2 give mean effect size
estimates closer to the true effect size. The average bias (or deviation
from the true effect size) is provided in detail in Table 1.

Furthermore, it can be seen in Fig. 2 that that when npilot increases
(e.g., right facet), the variation in the estimates decreases. This is not
surprising: With a larger sample, estimates will be, on average, more
accurate. Especially with small pilot samples, it is likely that the effect
size is either severely under- or overestimated. This, in turn, leads to
sample sizes for the main study that are either too low or too high.
Thus, small pilot studies lead to large variation in effect size estimates
both in the pilot study itself, as in the follow-up study when the sample
size is based on the effect size observed in the pilot study.

There is another complication in determining the sample size of the
main study, nmain. As Fig. 1 shows, the relation between estimated effect size
in the pilot and nmain following a power analysis is clearly non-linear. Be-
cause of the uncertainty in estimating the effect sizes in small samples, effect

sizes estimates from the samples will vary around the true effect size. A
higher estimate for the effect size will yield a lower value for nmain in a
power analysis, and a lower estimate for the effect size will yield a higher
value for nmain. The median of the effect size distribution lies roughly at
η2 = 0.05, which corresponds to nmain = 76 measurements per group in the
main study. An estimated effect size 0.025 above this median, yields
nmain = 50, whereas an estimated effect size of 0.025 below this median
yields nmain = 155 Clearly, 50 is much closer to the accurate sample size
required to achieve 0.8 power of 76 observations per group than 155 is. Due
to the non-linear relation between sample size and power, the probability
that nmain is severely overestimated is much larger than the probability that
nmain is severely underestimated. In mathematical statistics, this phenom-
enon is known as Jensen's inequality (Jensen, 1906).

This is demonstrated in Fig. 3. The distribution of nmain based on an a-
priori power analysis (assuming the effect size in the pilot study is the true
effect size) is very skewed, showing that, on average, the sample size for the
main study is considerably overestimated. Especially with very small sample
sizes, this leads to follow-up studies where the median sample size falls
below the required sample size to reach a power of 0.8.

As a final and most important step, we can see the consequences of the
too small sample sizes in the main study when we analyze the power of the
main study. Fig. 4 shows that with only npilot = 10 measurements per

Fig. 2. Box plots (marking the median and the 1st and 3rd quartiles of the distribution)
and violin plots for effect size estimates for t-tests with a large true population effect size.
The dashed line marks the true effect size, and the dots mark the mean effect size estimate
in the simulation. The panels denote, from left to right, npilot values of 10, 25, and 50.
Reprinted from http://dx.doi.org/10.6084/m9.figshare.5198050, CC-BY4.0.

Table 1
Mean bias in effect size estimate for the 3 × 3 combinations of population effect size and
pilot sample size, for the three effect size measures.

Population effect size

npilot Small Medium Large Average

η2 10 +0.0153 +0.0232 +0.0349 +0.0245
25 +0.0068 +0.0150 +0.0270 +0.0163
50 +0.0042 +0.0124 +0.0245 +0.0137
Average +0.0088 +0.0169 +0.0288 +0.0182

ε2 10 −0.0001 −0.0005 −0.0016 −0.0007
25 −0.0000 −0.0004 −0.0013 −0.0006
50 −0.0000 −0.0003 −0.0012 −0.0005
Average −0.0000 −0.0004 −0.0014 −0.0006

ω2 10 −0.0001 −0.0012 −0.0034 −0.0016
25 −0.0001 −0.0007 −0.0029 −0.0012
50 −0.0000 −0.0006 −0.0028 −0.0012
Average −0.0001 −0.0008 −0.0030 −0.0013

Fig. 3. Box plots and violin plots for the estimated sample size per condition required to
reach 0.8 power based on the effect size estimate from a pilot study with npilot (left: 10,
middle: 25, right: 50) participants per condition for the t-test with a large population
effect size (0.1379). The dashed horizontal line indicates the required sample size
(n = 26) to achieve 0.8 power for the true effect size. The vertical axis is capped at
n = 250. Reprinted from http://dx.doi.org/10.6084/m9.figshare.5198053, CC-BY4.0.
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group, the main study is seriously underpowered, on average. The reason
for this is mainly the accuracy bias due to the skewness introduced by
Jensen's inequality.

6.1. Results for lower population effect sizes

So far, we have looked at simulations where the population effect
size is large. Power analyses based on relatively small pilot studies
become more inaccurate when the effect size is medium or small.
Fig. 5a displays the true power for follow-up studies when examining
small effect sizes, and Fig. 5b displays the true power for medium effect
sizes, complementing Fig. 4.

The smaller the sample size of the pilot study, the larger the var-
iance of the effect size estimate, and thus the wider its distribution. For
ε2 and ω2, this means that a relatively larger percentage of effect size
estimates falls below 0, and cannot be used for a power analysis. When
power analyses are performed using ε2 and ω2, the effect sizes calcu-
lated from the pilot studies overestimate the true effect size as ex-
plained above, leading to relatively underpowered studies. Fig. 5a
shows that for small effect sizes and npilot = 10, the main study is ex-
tremely underpowered with power less than half of what it should be.
Perhaps situations like these won't occur often in practice: even with an
alpha-level of 0.10 or 0.15, pilot studies are likely to be non-significant
and interest in the line of research would diminish. When true effect

sizes are small, using effect sizes estimates from small pilot studies to
perform power analyses for a main study is not a useful approach to
design well-powered main studies. Main studies remain underpowered,
but to a lesser extent, when npilot is set to 25, or with npilot = 50. The
observed power is closer to the true power in these studies. Further-
more, it can be seen that the differences between the three effect sizes,
η2, ω2 and ε2, are substantial. Even though η2 is positively biased, the
fact that it can't be negative yields follow-up studies with better power
(because more power analyses yield sample size estimates below
100,000), but only when effect sizes are small, and/or when effect sizes
are medium, and pilot studies are small (situations that might not often
occur in practice).

7. Follow-up bias

In the simulations reported above, we have set the maximum
sample size for a follow-up study to 100,000 participants to be able to
illustrate the effects of accuracy bias. With extremely rare exceptions,
collecting 100,000 participants will not be feasible in practice. Fraley
and Vazire (2014) examined the total sample sizes in six psychology
journals between 2006 and 2010, and found that median total sample
sizes range from 211 to as low as 51.5. It is therefore important to
examine the consequences of follow-up bias, or the tendency to only
perform follow-up studies when sample sizes in pilot studies are suffi-
ciently large.

We can simulate the consequences of follow-up bias as a function of
the maximum sample size a researcher is willing, or has the resources,
to collect. Remember that for a given study, the choice to perform a
follow-up study based on a maximum sample size is directly related to
the smallest effect size or a largest p-value a researcher will decide to
follow up on (see Fig. 1). By re-analyzing our simulation results, we can
examine what happens when the maximum sample size in a follow-up
study is lowered from 100,000 to more realistic values. In Fig. 6 we
present these re-analyses for small, medium, and large true effect sizes.
We only look at η2 for sake of simplicity (the effects of follow up bias on
ω2 and ε2 being similar to η2), and examine follow-up studies designed
to have a power of 0.8 and a pilot study with npilot = 25.

The power when follow-up studies have a maximum sample size of
100,000 is 0.58, 0.72, and 0.76 (the middle bar in Figs. 4 and 5a,b, and
the dashed lines in Fig. 6). When the maximum sample size a researcher
is willing to collect lies below 250 participants per group, the true
power in follow-up studies is even lower. For example, when examining
a medium true effect size (the middle red line in Fig. 6), and relying on
a pilot study with 25 participants in each sample, researchers who are
willing to collect a maximum of 100 participants in each of two groups
(so 200 in total) will achieve at most a power of 0.6, in the long run. For

Fig. 4. Mean power for a t-test, when the sample size for the main study is based on an a-
priori power analysis to achieve a power of 0.8 (dotted line) based on the effect size
estimate observed in a pilot study with npilot (left: 10, middle: 25, right: 50), when the true
effect size is large (.1379). Reprinted from http://dx.doi.org/10.6084/m9.figshare.
5198056, CC-BY4.0.

Fig. 5. a (left) and b (right). Mean power for a t-test, when the sample size for the main study is based on an a-priori power analysis to achieve a power of 0.8 (dotted line) based on the
effect size estimate observed in a pilot study npilot (left: 10, middle: 25, right: 50), when the true effect size is small (.0099; panel a) and medium (0.0588; panel b). Reprinted from http://
dx.doi.org/10.6084/m9.figshare.5198059 and http://dx.doi.org/10.6084/m9.figshare.5198062, CC-BY4.0.
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large true effects, the additional bias in the true power due to follow-up
bias is only pronounced when the maximum sample size a researcher is
willing to collect is small (see the upper curve in Fig. 6). For small true
effects, follow-up bias leads to main studies that are not even close the
desired 0.8 power. Fig. 6 clearly shows that designing main studies
based on effect sizes estimated from small pilot studies does not yield
desired levels of power due to accuracy bias and follow-up bias. Tables
S4 to S6 in the Supplementary Material provide the observed power for
each of the 162 conditions for various levels of n⁎.

7.1. More than two groups

When the number of groups increases, the differences in power and
the proposed sample size for the main study due to differences in npilot
become somewhat smaller: The biases we discuss in this paper are more
severe for the t-test than for a four group ANOVA. This, however, is
largely due to the set-up of the simulation study, where an increase in
the number of groups also mean an increase in the total sample size. For
example, npilot = 25 means that the total sample size equals K× 25.
For a t-test this is 2 × 25 = 50, whereas for a one-way ANOVA with
four groups it is 4 × 25 = 100. For instance, with two groups and a
large effect size, a pilot study with a total sample size of 50 has a power
of 0.79, but with three groups and a large effect, the pilot study has a
total sample size 75, and 0.87 power. The Supplementary Material
provides similar information for each of the 1628 conditions. Tables S1
to S3 provide, for the three types of effect size studied in this paper, the
median nmain, the average and median bias, the root mean-squared
error, the percentage of simulations where the power analysis yielded a
sample size estimate above n⁎ and the average achieved power.

7.2. Change in power

When the power is set to 0.9 rather than 0.8, the impact of negative
or small effect size estimates is roughly similar. Averaged over all
conditions with 0.8 desired power, the achieved power is 0.647, which
is 80.9% of 0.8 power. Averaged over all conditions with 0.9 desired
power, the achieved power is 0.717, which is 79.7% of 0.9 power.
When the true population effect is small, and/or the pilot study is small,
the observed power is slightly better when studies were designed to
have 0.9, compared to 0.8 power. In the other conditions, the opposite
holds. (see Tables S1, S2, and S3).

7.3. Summary

Tables 2 summarizes the findings of Tables S1, S2 and S3 for the
different values of one parameter, averaging across all other parameters

in the simulation, with respect to K, npilot, ESs and ESp. Overall, η2 yields
considerably less powerful main studies than ω2 and ε2. Furthermore, in
all situations, the average power lies well below the desired level. On
average, the achieved power is about 80% of the desired power. Out of
all 162 simulated conditions, only nine conditions have an average
power level that reaches (or exceeds by 1%) the desired level of power.
These conditions aimed for a desired power of 0.8, examined a large
true effect, with two conditions having npilot = 25, and the other six
have npilot = 50. None of the seven conditions relied on η2. Ironically,
these are exactly the situations least representative of current practices
in psychology, where effect sizes are often not large (Richard,
Bond, & Stokes-Zoota, 2003), studies have low sample sizes
(Fraley & Vazire, 2014), and η2 is used more often than ε2 or ω2 (Open
Science Collaboration, 2015).

8. Discussion

We have shown that the practice of conducting a pilot study, esti-
mating the effect size from the data, and using the effect size estimate in
an a-priori power analysis to decide upon the sample size of the follow-
up study leads to substantially underpowered main studies in most
realistic situations. Although researchers are often reminded that effect
size estimates from small studies can be unreliable (e.g., Lakens & Evers,
2014), researchers are rarely informed about the consequences of using
biased effect size estimates in power analyses. Researchers who design
studies based on effect size estimates observed in pilot studies will
unknowingly design on average underpowered studies, as long as they
don't take bias in the estimated effect sizes and follow-up bias into
account. The difference between the desired and achieved power can be
especially worrying when the sample size of the pilot study and/or the
population effect size is small, or when researchers are not willing to
collect large sample sizes in the main study. It is important that re-
searchers are aware of these pitfalls when designing studies.

Based on the results of the simulations in this manuscript, we offer
the following recommendations for researchers who want to decide
upon a sample size when designing their study. First and foremost, we
recommend against performing a pilot study to estimate an effect size,
and subsequently using this effect size estimate in a power analysis to
design a follow-up study. This can lead to seriously underpowered study
designs, especially when the sample size of the pilot and/or the true
effect size is small to medium. Not only is this approach inaccurate, it is
inefficient. The data from the pilot study is either completely ignored,
or at least not included in the main study. We don't see how this waste
of pilot data can be justified, when the end result is a procedure that
yields underpowered main studies. Pilot studies can be performed be-
cause they have other uses, such as determining the feasibility of per-
forming the designed study in practice, which is especially useful when
trying out new methods or procedures (Leon et al., 2011).

Alternative approaches exist. First, one can determine the smallest
effect size of interest (SESOI), based on either utility or theoretical ar-
guments, and use the SESOI in an a-priori power analysis. This leads to
main studies that have a pre-determined statistical power to detect or
reject the smallest effect size that is deemed worthwhile to study. For
example, if researchers decide their SESOI is a medium effect size of
η2 = .0588 a study with 87 participants in each of two groups will in
the long run have a power of 0.9 to detect the SESOI, or reject it in an
equivalence test (Lakens, 2017). Choosing a SESOI allows researchers to
control their Type II error rate exactly for effect sizes they care about.

Alternatively, researchers might simply decide upon the maximum
sample size they are willing to collect. Such a maximum number can
and should be motivated, e.g. based on theoretical constraints or the
amount of means available. Fig. 7 shows the statistical power as a
function of the sample size for a two-group ANOVA for small, medium,
and large effects. Simply collecting a maximum number of observations
will lead to considerably higher power than aiming for a power of 0.8,
given a maximum sample size you are willing to collect (see Fig. 6), but

Fig. 6. Power for main studies (where the sample size is based on a power analysis with
an effect size estimated from a pilot study with npilot = 25), as a function of the true effect
size and the maximum sample size per group a researcher is willing to collect in the main
study. Reprinted from http://dx.doi.org/10.6084/m9.figshare.5198065, CC-BY4.0.
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it is less efficient (you will end up collecting more participants than
when you had performed an a-priori power analysis).

A more efficient alternative approach to designing studies is to use se-
quential analyses, which allows researchers to analyze the data multiple
times (e.g., after 50, 100, 150, and 200 participants have been collected)
whilst controlling Type I error rates. For a frequentist introduction of se-
quential analysis, see Lakens (2014), for a Bayesian introduction, see
Schönbrodt, Wagenmakers, Zehetleitner, and Perugini (2017), for the
mathematical background, see Wald (1945), and Siegmund (2013). It can
be shown mathematically that sequential analyses are more efficient than
the double sampling scheme with a pilot study, and sequential analyses are
especially appropriate whenever the true effect size is relatively uncertain.
However, sequential designs are not always feasible. For example, in a 5-
year longitudinal study, one can only look at the data after five years, and
each subsequent look at the data adds another 5 years to the research
project. In such designs, power analyses will still be an important aspect of
the study design. In such situations, and alternative approach is to perform a
conditional power analysis, where an initial internal pilot study is collected,
based on which a power analysis is performed (if the effect is not yet sig-
nificant based on the available data), after which the remainder of the re-
quired sample is collected, and all data is combined in the final analysis.

We believe recent recommendations such as “Explore small, confirm
big” (Sakaluk, 2016) are not useful. Small pilot studies only provide useful
information to design follow-up studies when effect sizes are large. When
the true effect size is large (η2 = 0.1379) even relatively small follow-up
studies (e.g., n=34 in each group for a t-test) have sufficient (i.e., 0.9)
power. When the true effect size is small or medium, small pilot studies will
have low power and effect size estimates have high variability, which make
it difficult to decide whether, or how, a follow-up study should be designed.
Do not use extremely small sample sizes (e.g., npilot = 10) to estimate the
true effect size. These are too small to get even remotely accurate estimates
for nmain in a power analysis.

Do not use η2 in power analyses as this leads to the lowest power, on
average (Table 2) – use ε2 or ω2 instead. Note that 56% of the studies in
the Reproducibility Project used η2 or ηp2 as the effect size index for the
a-priori power analysis.

Power analyses based on pilot studies almost always yield estimates
of the sample size of the main study nmain that are too low. Whenever
power analyses are based on effect size estimates from previous re-
search (either pilot studies, or published studies) we recommend re-
searchers take measures to compensate for this bias. A possible solution
is to perform power analyses with ∼η 2 rather than η2, where ∼η 2 is the
lower bound of a 80% confidence interval for η2. This recommendation,
known as safeguard power analysis, was proposed by Perugini et al.
(2014). Alternatively, one can model the bias, and calculate nmain based
on a truncated F-distribution. This approach, building on work by
Taylor and Muller (1996), was recently recommended by Anderson and

Maxwell (2017). Researchers can choose the level of truncation (e.g.,
making the assumption that only studies with p < 0.05 appear in the
literature), and perform a power analysis based on this truncated F-
distribution. When sequential analyses are not possible, the use of
safeguard power or truncated F-distributions are good approaches to
compensate for the bias in traditional power analyses where the effect
size is derived from a pilot study or the published literature.

8.1. Suggestions for future research

This manuscript focused on the use of effect sizes to determine the
sample size in follow-up studies using balanced one-way ANOVA's. For
unbalanced designs (designs with substantially different sample sizes
per cell) the bias in power analysis might be different (Kline, 2013).
Furthermore, in other experimental designs, such as regressions, more-
way factorial ANOVAs and within-subject designs, follow-up bias will
also distort power analyses. The extent of the bias in these designs could
be quantified in future simulation studies. Researchers interested in
preventing bias in those situations are recommended to adapt our si-
mulations to their situation of interest, or use sequential designs in-
stead. Furthermore, because the strength of the bias in power analysis is
most severe if the maximum sample size researchers are willing to
collect is relatively small, and the SESOI is thus relatively large, it is
interesting to empirically examine what the distribution of the SESOI
and maximum sample size researchers are willing to collect is in dif-
ferent research domains, and how this affects follow-up bias.

Researchers become increasingly aware of the importance of de-
signing well-powered studies. Several journals now require authors to
justify their sample sizes, and although power analyses are only one
possible justification, it seems likely power analyses will become more
widely used. Power analysis can be one of the factors informing a study
design, but it should not be mechanistically used to determine the
sample size that will be collected. We feel it is important that re-
searchers realize possible sources of bias in the estimated sample sizes
they need for a desired level of power, and are advised to attempt to
correct for these biases when designing a study, or use other approaches
to determine the sample size of a study.
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Table 2
Average estimates of the observed power in main studies for a desired power level of
0.8 and 0.9 for (i) number of groups, (ii) the size of pilot study, (iii) effect size index,
(iv), and true population effect size.

0.8 0.9

K = 2 .659 .726
K = 3 .644 .715
K = 4 .638 .711
npilot = 10 .553 .617
npilot = 25 .665 .736
npilot = 50 .723 .799
ε2 .655 .724
η2 .626 .699
ω2 .660 .728
ESp small .472 .534
ESp medium .705 .777
ESp large .764 .840

C. Albers, D. Lakens Journal of Experimental Social Psychology 74 (2018) 187–195

193

https://osf.io/zq9mg/
http://dx.doi.org/10.6084/m9.figshare.5198068


Appendix A. Computation of effect sizes based on reported F-statistics

The formulas on page 5 seem to suggest that full details of the ANOVA table are required to compute the effect sizes. This is not the case: with
some algebra (Carroll & Nordholm, 1975; Cohen, 1988) it can be shown that, in the between-subject designs studied in this paper, all effect sizes can
be computed on basis of reported F values and degrees of freedom only. (Note that for the t-test, F = t2 and dfB = 1).

In a one-way ANOVA η2 equals ηp2 (and ω2 = ωp
2, and ε2 = εp

2). In more complex designs than One-Way ANOVA's partial effect sizes are used in
a-priori power analysis. Researchers often don't report ωp

2 or εp2. Fortunately, for designs where all factors are manipulated (but not for studies with
measured factors or ANCOVA's) these (partial) effect size indices, as well as Cohen's f, can be calculated from the F-value and both degrees of
freedom:

=
×

× +
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A spreadsheet document to calculate ηp
2, ωp

2 and εp
2 from the F-value and degrees of freedom is available from https://osf.io/zq9mg/.

Appendix B. Computational power analysis

Power analyses are computationally tricky and therefore usually performed using software as G*Power (Faul, Erdfelder, Lang, & Buchner, 2007)
or the pwr R package (Champely, 2015). For a One-Way ANOVA, it requires an iterative approach, which is as follows (cf. Champely, 2015; Cohen,
1988; Faul et al., 2007). First, the so-called non-centrality parameter λ is specified via

=λ nδ
MS2

,
W

2

where n denotes the required sample size per group and δ2 the effect size in the population. Next, n is obtained by equating.

= ′− − − − −F Fα k n k β k n k λ, 1, ( 1) 1 , 1, ( 1), (1)

Here, α denotes the level of significance and 1 – β denotes the desired power (cf. Cohen, 1988). A solution for n is found through the bisection
method:

(i) Specify a lower bound n⁎ and upper bound n⁎ for n,
(ii) Compute Eq. (1) for ′ =

+∗
∗

n n n
2 ,

(iii) When the left-hand-side of (*) exceeds the right-hand-side set n⁎ = n′, else set n⁎ = n’,

Repeat steps (i)–(iii) until the absolute difference between the left-hand side and right-hand side of Eq. (1) is smaller than some pre-specified
tolerance level.

Appendix C. Overview of the six steps in the simulation study

1. Input: K, npilot, ESp, ESs, β, and α.
2. Compute f= √(ESp/1 – ESp)
3. Generate pilot data: npilot observations per group, from normal distributions with means: –f and +f (K= 2), −f, 0 and + f (K = 3), − f, − f, +f

and + f (K= 4) and a standard deviation of 1.
4. Based on the pilot data, estimate either η2, ω2 or ε2.
5. Perform an a-priori power analysis using the pwr package to determine the sample size per group of the main experiment. When this exceeds

n⁎ = 100,000 (e.g. when ω2 = 0), the sample size is coded as ‘not available’.
6. For all performed power analyses, a study identical to the pilot study but with a sample size based on the power analysis was performed. For these

studies, we calculated three effect size estimates (η2, ε2, and ω2), performed the statistical test and stored the p-value and the sample size of the
study. When the power analysis in step 5 yielded NA, all values for the effect size, p-value, and sample size were set to NA as well.

Appendix D. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jesp.2017.09.004.
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