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Abstract When analysing three-way arrays, it is common practice to centre the ar-3

rays. Depending on the context, centring is performed over one, two or three modes.4

In this paper, we outline how centring affects the rank of the array; both in terms of5

maximum rank and typical rank.6

Key words: three-way analysis, multiway analysis, maximum rank, typical rank,7

Candecomp/Parafac8

1 Introduction9

Let X, of dimension I× J×K, be a three-way array (also termed a tensor) with10

entries xi jk. For sake of simplicity we assume that I ≤ J ≤ K (whenever this is not11

the case we can make this the case without loss of generality by simply permuting12

the labels of the array).13

In the analysis of arrays, the concept of rank is of importance, for the same rea-14

sons why it is important in the analysis of a two-way data matrix. The rank of a15

matrix is the dimension of the vector space spanned by its columns, i.e. the maxi-16

mum number of distinct components the array can be decomposed into. For arrays,17
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the concept of rank is similar, but now for three dimensions rather than two. (See18

Section 2 for details.)19

In this paper, we study the consequences of centring, over either one, two or three20

modes, on the rank of the array. Centring three-way arrays is common practice in21

data analysis; similar to the centring of data matrices prior to performing a principal22

components analysis.23

One should distinguish different types of pre-scaling data. One purpose of pre-24

scaling is (i) to reduce the effects of incommensurabilities in different parts of the25

data, or transformations to more acceptable measures such as logs or square-roots,26

but another is (ii) to isolate different substantive components which deserve separate27

examination. Normalisation in Principal Component Analysis is an example of (i),28

while removing the mean is an example of (ii). In this paper we are concerned with29

(ii) and note that the separate components of analysis not only enhance interpreta-30

tion but may also reduce rank. Thus, although centring is usually performed solely31

to improve model fit, e.g. of a Candecomp/Parafac or Tucker3 decomposition, it is32

important to realise that centring can have a substantive effect. In the analysis of33

additive models, especially when studying interactions [1, 2], it is common to parti-34

tion X into parts for the overall mean, main effects, biadditive effects and triadditive35

effects:36

xi jk = m+{ai +b j + ck}+{d jk + eik + fi j}+gi jk (1)

where the terms with a single suffix represent main effects, those with double suf-37

fices two factor interactions and gi jk represents contributions from three factor in-38

teractions. Some components of the interactions may be regarded as “error”. The39

defining equations are subsumed in the identity:40

x̂i jk = x···+{(xi··− x···)+(x· j·− x···)+(x··k− x···)} (2)
+{(x· jk− x· j·− x··k + x···)+(xi·k− xi··− x··k + x···)

+(xi j·− xi··− x· j·+ x···)}
+(xi jk− x· jk + xi·k + xi j·+ xi··+ x· j·+ x··k− x···)

where the expressions in parentheses in (2) estimate the corresponding parameters41

in (1).42

The triadditive model for given choices of P≤ I,Q≤ J,R≤ K and S is given by43

xi jk = m+ai+b j +ck+
P

∑
p=1

d jpd̃kp+
Q

∑
q=1

eiqẽkq+
R

∑
r=1

fir f̃ jr +
S

∑
s=1

gisg̃ js ˜̃gks+εi jk (3)

(By taking S = 0, one obtains the biadditive model.) To make this model identi-44

fiable, zero-sum identification constraints are required. Without such constraints,45

exactly the same fit would be obtained if, e.g., a non-zero value ε was added to all46

ai and subtracted from all b j. Requiring zero-sums is in line with the concept of47

marginality [12], i.e. first fitting an overall effect, then main effects on the residuals,48

then biadditive effects on the resididuals, and so on. In biadditive models, zero-sum49

constraints are straightforward, but this is not the case in triadditive models since for50
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triadditive models, some forms of centring change the form of the model. One con-51

sequence is that the least-squares estimates of the triadditive interaction parameters52

depend on how exactly, i.e. by how many components, each of the biadditive terms53

is modelled [2, 7]. To bypass these issues, one may fit the triadditive part conditional54

on the main effects and the saturated biadditive components of the model. That is,55

we fit the triadditive part of the model to the biadditive residual table:56

zi jk = xi jk− x· jk− xi·k− xi j·+ xi··+ x· j·+ x··k− x···. (4)

Triadditive interactions in (3) may be modelled using a truly triadic model such as57

the Candecomp algorithm [6], minimising58

∑
i, j,k,r

(zi jk−airb jrckr)
2 (5)

(see next Section).59

Thus, centring over one or two modes, can be seen as taking out main effects or60

two-way interactions, respectively, and analyse them separately. It is important to61

wonder whether it is sensible for the problem at hand to perform the chosen type of62

centring. In the words of [11]: ‘It is important that the final model or models should63

make sense physically: at a minimum, this usually means that interactions should64

not be included without main effects nor higher-degree polynomial terms without65

their lower-degree relatives.’66

In this paper, we study the effect of various types of centring on the rank of three67

way arrays. This paper is organised as follows. In Section 2 we establish notation68

and recall relevant definitions from literature. Section 3 hosts the main theorem on69

the rank properties of centred arrays. We conclude with a series of examples in70

Section 4.71

2 Notation and known results72

We adhere to the standardised notation and terminology as proposed by [8]. The73

mode A matricised version of X is given by the I× JK matrix Xa with all vertical74

fibers of a three-way array collected next to each other. Mode B and Mode C matri-75

cised versions are defined in analogous ways. The vectorisation operator vec implies76

column-wise vectorisation and ⊗ is used for the Kronecker product. Furthermore,77

array G is the so-called superidentity core array with elements gpqr = 1 if p = q = r78

and gpqr = 0 otherwise. Finally, I is the identity matrix and 0 and 1 are column79

vectors with all values either 0 or 1, respectively, all of accommodating size.80

There is a considerable literature on the ranks of general three-way arrays, sum-81

marised by [4], [13, Section 2.6] and [9, Section 8.4]. There are two types of rank82

to be considered: maximum rank and typicial rank.83

Definition 1. The maximum rank of three-way array X, with dimension I× J×K,84

is defined as the smallest value of R that can give exact fit for85
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I,J,K

∑
i, j,k=1

R

∑
r=1

(
zi jk−airb jrckr

)2
. (6)

Definition 2. The typical rank is defined by [4, p.3] as follows: “The typical rank86

of a three-way array is the smallest number of rank-one arrays that have the array87

as their sum, when the array is generated by random sampling from a continuous88

distribution.”89

An earlier definition of typical rank by [10] is given in a more complicated way [4],90

but on [10, p.96] (bottom paragraph) seems to converge to Ten Berge’s definition.91

So we follow the latter one. Since typical rank can be smaller than maximal rank92

(see [4] for examples), it will be of more practical usefulness than maximal rank,93

as this already provides a practical upper-bound to the number of components one94

wants to decompose the array in.95

When J is small (close to I), the rank of X is less than the upper bound K but it96

seems to coincide with the upper bound when K ≥ IJ. These results are less simple97

than those for matrices, but have in common more concern with good low-rank98

approximations to (6) rather than with the rank itself. The three-way interaction in99

(4) is free both of main effects and of two-way interactions, and so all its margins100

are null. Thus, the three-way table Z = {zi jk} is a special form of a triadditive table101

and it may be expected to have special properties. In particular, we may expect it102

to have lower triadditive rank than for unconstrained triadditivity. Also, when only103

some of the modes are centred, the rank is expected to be reduced. A formal result104

that establishes this expectation, is given in the following section.105

3 Main result106

Theorem 1. Let the class of real-valued three-way arrays I× J×K have at most107

maximum rank f (I,J,K), where f (I,J,K) denotes a particular function of I, J, and108

K. Then, a three-way array obtained by centring an array from this class of arrays109

will have rank at most equal to f (I∗,J∗,K∗), where the starred versions denote110

(I− 1) or I, (J− 1) or J, (K− 1) or K, respectively, depending on whether or not111

the array has been centred across the first, second and/or third mode respectively.112

Before we prove Theorem 1, we make three remarks.113

Remark 1. It should be mentioned that [5, p. 375] already mentioned that double114

centring symmetric matrices “has a rank-reducing impact on the symmetric array”115

and they give a concise proof for that. The above Theorem follows the same reason-116

ing as [5] but gives a more general result.117

Remark 2. We conjecture that the analogous theorem where “maximal rank” is re-118

placed by “typical rank” also holds. For several classes of arrays of size I× J×K,119

the typical rank has been given as a function f (I,J,K) of I, J and K, and our con-120

jecture is that, like for the maximal rank, upon centring the array across the first,121
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second and/or third mode, the typical rank should be given by f (I∗,J∗,K∗), where122

the starred versions denote (I−1) or I, (J−1) or J, and (K−1) or K, respectively,123

depending on whether or not the array has been centred across the first, second124

and/or third mode respectively. In fact, [5] apply this reasoning. This may very well125

be correct, but we do not know whether we can still consider a class of random126

arrays which (all in the same way) have been double centred and from which two127

slices have been chopped off as “generated by random sampling from a continuous128

distribution”1
129

Remark 3. We have no knowledge of any encompassing function f (I,J,K) describ-130

ing the maximal rank of I × J×K arrays, but there are results for some general131

classes of I×J×K arrays for the maximal or typical rank (see below), for example,132

f (I,J,K) = I for all arrays for which JK− J < I < JK, and f now denotes typical133

rank [3]. However, in many cases no results are less general, and the function f in134

fact refers to a partially known mapping of the set {I,J,K} on the real field R. The135

mapping can be deduced from the literature, the latest summary of which (to our136

knowledge) has been given by [4].137

Proof. (of Theorem 1). Recall that the maximum rank of a three-way array X138

is given by the smallest number R for which for all i, j,k it holds that xi jk =139

∑
R
r=1 airb jrckr. In matrix notation, this is140

Xa = AGa(C⊗B)′, (7)

where Xa and Ga denote the A-mode matricised versions of X and G, respectively141

and A(I×R), B(J×R) and C(K×R) denote the component matrices for the three142

modes. The following equivalent expressions can be given upon B- or C-mode ma-143

tricisation:144

Xb = BGb(A⊗C)′, (8)

and145

Xc = CGc(B⊗A)′. (9)

Obviously,146

Xa = AGa(C⊗B)′ iff SXa(U⊗T)′ = SAGa(UC⊗TB)′, (10)

for any nonsingular square matrices S, T and U. Now suppose that X is centred147

across mode A, then for the vector u = (1,1, . . . ,1)′ it holds that148

u′AGa(C⊗B)′ = 0′. (11)

1 Technically, this is a matter of assessing the class’ Lebesgue measure, to which we have no clue.
To give an example that generally performed transformations may alter ‘randomness’ properties,
consider for instance squaring all values, which clearly affects the Lebesgue measure of subclasses
of the class of such arrays. However, because [5]’s transformations, as our own, are rank preserving,
we expect that the results that are only proven for the maximal rank, also hold for the typical rank
of classes of arrays.
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Choosing S as a non-singular matrix the first I− 1 rows of which are not centred149

(e.g. by taking these equal to the first I−1 rows of the I× I identity matrix) and the150

last row is the vector u′. Then, the last row of SA and hence of151

SXa = SAGa(C⊗B)′ (12)

equals 0′. Thus, the matricised array SXa can be written as
(

Ya
0

)
, in other words,152

as the concatenation of the (I− 1)× J×K array Ya containing the first I− 1 rows153

of SXa and the vector 0. For array Y, written in matricised form Ya, it holds that it154

has rank at most equal to f (I−1,J,K). Hence, it has a decomposition as in (7) for155

R = f (I−1,J,K). As a consequence, SXa can be written as156 (
Ya
0

)
=

(
A∗Ga(C⊗B)′

0

)
=

(
A∗
0

)
Ga(C⊗B)′,

where A∗= SA and thus SXa has a decomposition in R= f (I−1,J,K) components.157

As a consequence, because of (10), also Xa has a decomposition in R= f (I−1,J,K)158

components, from which it follows immediately that Xa has at most rank f (I −159

1,J,K).160

This concludes the proof of the theorem for centring across mode A. Centring161

across mode B or C can be proven completely analogously, using matricised forms162

(8) and (9). �163

4 Examples164

In this section, we give a few examples.165

Example 1. 100×3×2 arrays.166

The Theorem could be seen as stating that centring across one mode will always167

reduce the maximal rank of a class of arrays by a factor (G−1)/G where G denotes168

I, J, or K depending on the mode across which we centre. This, however, need not169

be true, as is obvious in the case where I >> JK. Suppose we deal with the class170

of 100x3x2 arrays. Then the typical rank will at most be 6 [4]. In this case, the rank171

does not depend on I at all (since I > JK). Hence, centring across mode A, will lead172

to R = f (I−1,J,K), which also equals 6 [4]. However, centring across mode B and173

C, does have an effect on the maximal rank. Provided that this is JK = 6, centring174

only across mode B reduces it to (J−1)K = 2×2 = 4, centring only across mode175

C reduces it to J(K− 1) = 3× 1 = 3 and centring across both modes reduces it to176

(J− 1)(K− 1) = 2× 1 = 2, a threefold reduction compared to the original typical177

rank.178

Example 2. 10×4×3 arrays.179

Following [4], for the class of arrays of size 10×4×3, the typical rank is 10. Table180

1 gives the typical rank for all combinations of centring of such arrays.181
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Clearly, in this case, the effect of single centring depends on the mode that is182

centred (see rows 2–4 in the table). This is even more so for the effect of double183

centring (rows 5–7).184

Mode A Mode B Mode C I∗× J∗×K∗ Typical rank
N N N 10×4×3 10
C N N 9×4×3 9
N C N 10×3×3 9
N N C 10×4×2 8
C C N 9×3×3 9
C N C 9×4×2 8
N C C 10×3×2 6
N N N 9×3×2 6

Table 1 Example of effects of (combinations of) centring of modes of 10× 4× 3 arrays. In the
table C means centring across that mode, and N means not centring across that mode. Results are
derived from Table 1 from [4]. The lines separate no centring, single centring, double centring and
triple centring.

Example 3. 2× J×K arrays.185

A third special case is concerned with triadditive interactions arrays, such as Z as186

given in Equation (4), with I = 2 and J,K > 2. In this case, the rank is J−1 and there187

are various ways decomposing the array into three component matrices with perfect188

fit. A convenient decomposition is the following. As Z has zero-sum marginals, it189

is clear that A ∝ (1,−1)′ (with dimension 2× (J−1)) and it’s convenient to choose190

A ∝ (1,−1)′. Then, the matrices B (J×(J−1)) and C (K×(J−1)) can be obtained191

from the J×K matrix Z1 =−Z2 through a singular value decomposition, where Z1192

and Z2 denote the first and second horizontal slices of Z.193

However, a simpler decomposition emerges upon writing194

Z1 =

(
Z∗1
−1′Z∗1

)
,

where Z∗1 contains the first J − 1 rows of Z. Then, obviously, Z1 = BC′, where195

B = (I,−1)′, with I of order (J− 1)× (J− 1), and C′ = Z∗1. As, clearly, A, B and196

C all have J− 1 columns, thus constituting a rank J− 1 decomposition of Z. The197

convenience of this solution lies in that of the three component matrices, only C198

contains values that relate to the data itself.199

5 Conclusion200

To conclude, it has been seen that centring often, but not always reduced the rank of201

arrays. Sometimes, the reduction is dramatic, and comes close to practical values.202

For instance, a researcher should not be surprised to find perfect PARAFAC fit al-203
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ready for R = 2 when analysing a 100×3×2 array which has been centred across204

B- and C-mode.205

References206

[1] Albers, C.J., Gower, J.C.: A contribution to the visualisation of three-way ar-207

rays. Journal of multivariate analysis 132, 1–8 (2014)208

[2] Albers, C.J., Gower, J.C.: Visualising interactions in bi- and triadditive models209

for three-way tables. Submitted for publication (2015)210

[3] ten Berge, J.M.F.: The typical rank of tall three-way arrays. Psychometrika 65,211

525–532 (2000)212

[4] ten Berge, J.M.F.: Simplicity and typical rank results for three-way arrays.213

Psychometrika 76, 3 – 12 (2011)214

[5] ten Berge, J.M.F., Sidiropoulos, N.D., Rocci, R.: Typical rank and indscal di-215

mensionality for symmetric threeway arrays of order I× 2× 2 or I× 3× 3.216

Linear Algebra and its Applications 388, 363 – 377 (2004)217

[6] Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimen-218

sional scaling via an n-way generalization of ‘Eckart-Young’ decomposition.219

Psychometrika 35, 283 – 319 (1970)220

[7] Gower, J.C.: The analysis of three-way grids. In: P. Slater (ed.) Dimensions221

of Intra Personal Space, vol. 2, The Measurement of Intra Personal Space by222

Grid Technique, pp. 163–173. Chicester: Wiley (1977)223

[8] Kiers, H.A.L.: Towards a standardized notation and terminology in multiway224

analysis. Journal of Chemometrics 14, 105–122 (2000)225

[9] Kroonenberg, P.M.: Applied Multiway Data Analysis. Hoboken, New Jersey:226

Wiley (2008)227

[10] Lickteig, T.: Typical tensorial rank. Linear Algebra and its Applications 69,228

95 – 120 (1985)229

[11] McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Boca Raton,230

Florida: Chapman & Hall/CRC (1989)231

[12] Nelder, J.A.: A reformulation of linear models. Journal of the Royal Statistical232

Society, Series A (General) 140, 48–77 (1977)233

[13] Smilde, A.K., Bro, R., Geladi, P.: Multi-way analysis with applications in the234

chemical sciences. Hoboken, New Jersey: John Wiley & Sons (2004)235


